12,280 research outputs found

    Theoretical Studies of Several Small-Ring Precursors to (+)-JQ1

    Get PDF
    We present the results of DFT(B3LYP) calculations on several precursors to (+)-JQ1 using an accurate basis set, including a report of conformational analysis, thermochemistry, optimized geometries and electrostatic potentials, and calculated IR and Raman spectra. Species include (I)1H-1,4-diazepin-2(3H)-imine, (II) 9H-[1,2,4]triazolo[4,3-a][1,4]diazepine, (III) 6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepine, and (IV) 4-(4-chlorophenyl)-6H-thieno[3,2f][1,2,4]triazolo[4,3-a][1,4]diazepine. Studies are also reported on monobrominated (II)-(IV) substituted at the chiral center of the seven member ring, including a comparison of the energetics of equatorial versus axial bromination of the parent precursor. Implications with regard to the larger structure of (+)-JQ1 are discussed

    Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US

    Get PDF
    The Community Multiscale Air Quality (CMAQ) model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US). The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA) Clear Air Mercury Rule (CAMR) emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW) US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem) and the Global/Regional Atmospheric Heavy Metals (GRAHM) model), and alternate meteorological input fields (for different years) are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions

    Many-Impurity Effects in Fourier Transform Scanning Tunneling Spectroscopy

    Full text link
    Fourier transform scanning tunneling spectroscopy (FTSTS) is a useful technique for extracting details of the momentum-resolved electronic band structure from inhomogeneities in the local density of states due to disorder-related quasiparticle scattering. To a large extent, current understanding of FTSTS is based on models of Friedel oscillations near isolated impurities. Here, a framework for understanding many-impurity effects is developed based on a systematic treatment of the variance Delta rho^2(q,omega) of the Fourier transformed local density of states rho(q,\omega). One important consequence of this work is a demonstration that the poor signal-to-noise ratio inherent in rho(q,omega) due to randomness in impurity positions can be eliminated by configuration averaging Delta rho^2(q,omega). Furthermore, we develop a diagrammatic perturbation theory for Delta rho^2(q,omega) and show that an important bulk quantity, the mean-free-path, can be extracted from FTSTS experiments.Comment: 7 pages, 5 figures. A version of the paper with high resolution, colour figures is available at http://www.trentu.ca/physics/batkinson/FTSTS.ps.gz minor revisions in response to refree report + figure 5 is modifie

    Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns

    Full text link
    We report the distribution of a cryptographic key, secure from photon number splitting attacks, over 35 km of optical fiber using single photons from an InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton emission to 10% of the Poissonian level without detector dark count subtraction. The source is incorporated into a phase encoded interferometric scheme implementing the BB84 protocol for key distribution over standard telecommunication optical fiber. We show a transmission distance advantage over that possible with (length-optimized) uniform intensity weak coherent pulses at 1310 nm in the same system.Comment: 4 pages, 4 figure

    A Spectral Method for Elliptic Equations: The Neumann Problem

    Full text link
    Let Ω\Omega be an open, simply connected, and bounded region in Rd\mathbb{R}^{d}, d2d\geq2, and assume its boundary Ω\partial\Omega is smooth. Consider solving an elliptic partial differential equation Δu+γu=f-\Delta u+\gamma u=f over Ω\Omega with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball BB, and then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials unu_{n} of degree n\leq n that is convergent to uu. The transformation from Ω\Omega to BB requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For uC(Ω)u\in C^{\infty}(\overline{\Omega}) and assuming Ω\partial\Omega is a CC^{\infty} boundary, the convergence of uunH1\Vert u-u_{n}\Vert_{H^{1}} to zero is faster than any power of 1/n1/n. Numerical examples in R2\mathbb{R}^{2} and R3\mathbb{R}^{3} show experimentally an exponential rate of convergence.Comment: 23 pages, 11 figure

    A spectral method for elliptic equations: the Dirichlet problem

    Full text link
    An elliptic partial differential equation Lu=f with a zero Dirichlet boundary condition is converted to an equivalent elliptic equation on the unit ball. A spectral Galerkin method is applied to the reformulated problem, using multivariate polynomials as the approximants. For a smooth boundary and smooth problem parameter functions, the method is proven to converge faster than any power of 1/n with n the degree of the approximate Galerkin solution. Examples in two and three variables are given as numerical illustrations. Empirically, the condition number of the associated linear system increases like O(N), with N the order of the linear system.Comment: This is latex with the standard article style, produced using Scientific Workplace in a portable format. The paper is 22 pages in length with 8 figure

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    Profiling SO2 air pollution patterns in 9 EU Aphekom cities: The Aphekom Project

    Get PDF
    A detailed analysis of hourly pollutant concentrations mainly focusing on SO2 data obtained from 9 centres involved in the Aphekom project was conducted. This involved the generation of individual diurnal SO2 profiles in order to: (i) identify city specific patterns including source apportionment and quantification, (ii) track changes over time, (iii) analyse the changes in SO2 concentrations from different emission sources, i.e. traffic, heating, shipping and industrial sources, overtime
    corecore