12,280 research outputs found
Theoretical Studies of Several Small-Ring Precursors to (+)-JQ1
We present the results of DFT(B3LYP) calculations on several precursors to (+)-JQ1 using an accurate basis set, including a report of conformational analysis, thermochemistry, optimized geometries and electrostatic potentials, and calculated IR and Raman spectra. Species include (I)1H-1,4-diazepin-2(3H)-imine, (II) 9H-[1,2,4]triazolo[4,3-a][1,4]diazepine, (III) 6H-thieno[3,2-f][1,2,4]triazolo[4,3a][1,4]diazepine, and (IV) 4-(4-chlorophenyl)-6H-thieno[3,2f][1,2,4]triazolo[4,3-a][1,4]diazepine. Studies are also reported on monobrominated (II)-(IV) substituted at the chiral center of the seven member ring, including a comparison of the energetics of equatorial versus axial bromination of the parent precursor. Implications with regard to the larger structure of (+)-JQ1 are discussed
Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US
The Community Multiscale Air Quality (CMAQ) model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US). The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA) Clear Air Mercury Rule (CAMR) emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW) US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem) and the Global/Regional Atmospheric Heavy Metals (GRAHM) model), and alternate meteorological input fields (for different years) are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions
Many-Impurity Effects in Fourier Transform Scanning Tunneling Spectroscopy
Fourier transform scanning tunneling spectroscopy (FTSTS) is a useful
technique for extracting details of the momentum-resolved electronic band
structure from inhomogeneities in the local density of states due to
disorder-related quasiparticle scattering. To a large extent, current
understanding of FTSTS is based on models of Friedel oscillations near isolated
impurities. Here, a framework for understanding many-impurity effects is
developed based on a systematic treatment of the variance Delta rho^2(q,omega)
of the Fourier transformed local density of states rho(q,\omega). One important
consequence of this work is a demonstration that the poor signal-to-noise ratio
inherent in rho(q,omega) due to randomness in impurity positions can be
eliminated by configuration averaging Delta rho^2(q,omega). Furthermore, we
develop a diagrammatic perturbation theory for Delta rho^2(q,omega) and show
that an important bulk quantity, the mean-free-path, can be extracted from
FTSTS experiments.Comment: 7 pages, 5 figures. A version of the paper with high resolution,
colour figures is available at
http://www.trentu.ca/physics/batkinson/FTSTS.ps.gz minor revisions in
response to refree report + figure 5 is modifie
Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns
We report the distribution of a cryptographic key, secure from photon number
splitting attacks, over 35 km of optical fiber using single photons from an
InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below
GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton
emission to 10% of the Poissonian level without detector dark count
subtraction. The source is incorporated into a phase encoded interferometric
scheme implementing the BB84 protocol for key distribution over standard
telecommunication optical fiber. We show a transmission distance advantage over
that possible with (length-optimized) uniform intensity weak coherent pulses at
1310 nm in the same system.Comment: 4 pages, 4 figure
A Spectral Method for Elliptic Equations: The Neumann Problem
Let be an open, simply connected, and bounded region in
, , and assume its boundary is smooth.
Consider solving an elliptic partial differential equation over with a Neumann boundary condition. The problem is converted
to an equivalent elliptic problem over the unit ball , and then a spectral
Galerkin method is used to create a convergent sequence of multivariate
polynomials of degree that is convergent to . The
transformation from to requires a special analytical calculation
for its implementation. With sufficiently smooth problem parameters, the method
is shown to be rapidly convergent. For
and assuming is a boundary, the convergence of
to zero is faster than any power of .
Numerical examples in and show experimentally
an exponential rate of convergence.Comment: 23 pages, 11 figure
A spectral method for elliptic equations: the Dirichlet problem
An elliptic partial differential equation Lu=f with a zero Dirichlet boundary
condition is converted to an equivalent elliptic equation on the unit ball. A
spectral Galerkin method is applied to the reformulated problem, using
multivariate polynomials as the approximants. For a smooth boundary and smooth
problem parameter functions, the method is proven to converge faster than any
power of 1/n with n the degree of the approximate Galerkin solution. Examples
in two and three variables are given as numerical illustrations. Empirically,
the condition number of the associated linear system increases like O(N), with
N the order of the linear system.Comment: This is latex with the standard article style, produced using
Scientific Workplace in a portable format. The paper is 22 pages in length
with 8 figure
Recommended from our members
Monitoring scan asymmetry of microwave humidity sounding channels using simultaneous all angle collocations (SAACs)
Simultaneous all angle collocations (SAACs) of microwave humidity sounders (AMSU-B and MHS) on-board polar orbiting satellites are used to estimate scan-dependent
biases. This method has distinct advantages over previous methods, such as that the estimated scan-dependent biases are not influenced by diurnal differences between the edges of the scan and the biases can be estimated for both sides of the scan. We find the results are robust in the sense that biases estimated for one satellite pair can be reproduced by double differencing biases of these satellites with a third satellite. Channel 1 of these instruments shows the least bias for all satellites. Channel 2 has biases greater than 5 K, thus needs to be corrected. Channel 3 has biases of about 2 K and more and they are time varying for some of the satellites. Channel 4 has the largest bias which is about 15 K when the data are averaged for 5 years, but biases of individual months can be as large as 30 K. Channel 5 also has large and time varying biases for two of the AMSU-Bs. NOAA-15 (N15) channels are found to be affected the most, mainly due to radio frequency interference (RFI) from onboard data transmitters. Channel 4 of N15 shows the largest and time varying biases, so data of this channel should only be used with caution for climate applications. The two MHS instruments show the best agreement for all channels. Our estimates may be used to correct for scan-dependent biases of these instruments, or at least used as a guideline for excluding channels with large scan asymmetries from scientific analyses
Multinet : enabler for next generation enterprise wireless services
Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view
Profiling SO2 air pollution patterns in 9 EU Aphekom cities: The Aphekom Project
A detailed analysis of hourly pollutant concentrations mainly focusing on SO2 data obtained from 9 centres involved in the Aphekom project was conducted. This involved the generation of individual diurnal SO2 profiles in order to:
(i) identify city specific patterns including source apportionment and quantification,
(ii) track changes over time,
(iii) analyse the changes in SO2 concentrations from different emission sources, i.e. traffic, heating, shipping and industrial sources, overtime
- …
