6,280 research outputs found

    Highly-tunable formation of nitrogen-vacancy centers via ion implantation

    Full text link
    We demonstrate highly-tunable formation of nitrogen-vacancy (NV) centers using 20 keV 15N+ ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5 x 10^10 to 2 x 10^11 ions/cm^2, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6 to 7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T2* ~ 3 microseconds, comparable to naturally occurring NV centers in high purity diamond with natural abundance 13C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.Comment: Related papers at http://pettagroup.princeton.ed

    Electrochemical reduction of carbamazepine in ethanol and water solutions using a glassy carbon electrode

    Get PDF
    The electrochemical reduction of carbamazepine in ethanol and water using a glassy carbon electrode has been studied. In all experimental conditions of scan rate and concentration of carbamazepine an irreversible cathodic wave was observed by cyclic voltammetry (CV). Electrochemical parameters and a plausible EqC mechanism have been reported from the electrochemical measurements and digital simulation. The values of thermodynamic E1/2 were correlated with solvent polarity parameters that it can be interesting for biological, pharmaceutical and forensic purposes. Limits of Detection (LOD) for DPV are 1.1 and 9.0 g/mL (4.65x10-6 and 3.81x10-5 M) in ethanol and water, respectively. The precision and recoveries obtained for tablets and plasma samples showed that the method could be successfully used for analysis

    Multiple gene aberrations and breast cancer: lessons from super-responders.

    Get PDF
    BackgroundThe presence of multiple molecular aberrations in patients with breast cancer may correlate with worse outcomes.Case presentationsWe performed in-depth molecular analysis of patients with estrogen receptor-positive, HER2-negative, hormone therapy-refractory breast cancer, who achieved partial or complete responses when treated with anastrozole and everolimus. Tumors were analyzed using a targeted next generation sequencing (NGS) assay in a Clinical Laboratory Improvement Amendments laboratory. Genomic libraries were captured for 3,230 exons in 182 cancer-related genes plus 37 introns from 14 genes often rearranged in cancer and sequenced to high coverage. Patients received anastrozole (1 g PO daily) and everolimus (5 or 10 mg PO daily). Thirty-two patients with breast cancer were treated on study and 5 (16 %) achieved a partial or complete response. Primary breast tissue was available for NGS testing in three of the responders (partial response with progression free survival of 11 and 14 months, respectively; complete response with progression free survival of 9+ months). The following molecular aberrations were observed: PTEN loss by immunohistochemistry, CCDN1 and FGFR1 amplifications, and PRKDC re-arrangement (NGS) (patient #1); PIK3CA and PIK3R1 mutations, and CCDN1, FGFR1, MYC amplifications (patient #2); TP53 mutation, CCNE1, IRS2 and MCL1 amplifications (patient #3). Some (but not all) of these aberrations converge on the PI3K/AKT/mTOR pathway, perhaps accounting for response.ConclusionsPatients with estrogen receptor-positive breast cancer can achieve significant responses on a combination of anastrozole and everolimus, even in the presence of multiple molecular aberrations. Further study of next generation sequencing-profiled tumors for convergence and resistance pathways is warranted

    Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide

    Full text link
    A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250 K to 310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the polarizable GCPM water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space

    Local Behavior of the First-Order Gradient Correction to the Thomas-Fermi Kinetic Energy Functional

    Full text link
    The first order gradient correction to the Thomas-Fermi functional, proposed by Haq, Chattaraj and Deb (Chem. Phys. Lett. vol. 81, 8031, 1984) has been studied by evaluating both the total kinetic energy and the local kinetic energy density. For testing the kinetic energy density we evaluate its deviation from an exact result through a quality factor, a parameter that reflects the quality of the functionals in a better way than their relative errors. The study is performed on two different systems: light atoms (up to Z=18) and a noninteracting model of fermions confined in a Coulombic-type potential. It is found than this approximation gives very low relative errors and a better local behavior than any of the usual generalized gradient approximation semilocal kinetic density functionals.Comment: 7 pages, 2 tables, 4 figure

    A quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability

    Full text link
    Microscopic cascading of second-order nonlinearities between two molecules has been proposed to yield an enhanced third-order molecular nonlinear-optical response. In this contribution, we investigate the two-molecule cascaded second hyperpolarizability and show that it will never exceed the fundamental limit of a single molecule with the same number of electrons as the two-molecule system. We show the apparent divergence behavior of the cascading contribution to the second hyperpolarizability vanishes when properly taking into account the intermolecular interactions. Although cascading can never lead to a larger nonlinear-optical response than a single molecule, it provides alternative molecular design configurations for creating materials with large third-order susceptibilities that may be difficult to design into a single molecule.Comment: 13 pages, 9 figures, 1 tabl

    Inter-Coder Agreement for Computational Linguistics

    Get PDF
    This article is a survey of methods for measuring agreement among corpus annotators. It exposes the mathematics and underlying assumptions of agreement coefficients, covering Krippendorff's alpha as well as Scott's pi and Cohen's kappa; discusses the use of coefficients in several annotation tasks; and argues that weighted, alpha-like coefficients, traditionally less used than kappa-like measures in computational linguistics, may be more appropriate for many corpus annotation tasks—but that their use makes the interpretation of the value of the coefficient even harder. </jats:p

    Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors

    Get PDF
    Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells. © 2010 MacTavish et al
    • …
    corecore