12 research outputs found

    Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients [version 2; referees: 3 approved]

    No full text
    Background: Tuberculosis (TB) is predominantly an airborne disease. However, quantitative and qualitative analysis of bio-aerosols containing the aetiological agent, Mycobacterium tuberculosis (Mtb), has proven very challenging. Our objective is to sample bio-aerosols from newly diagnosed TB patients for detection and enumeration of Mtb bacilli. Methods: We monitored each of 35 newly diagnosed, GeneXpert sputum-positive, TB patients during 1 hour confinement in a custom-built Respiratory Aerosol Sampling Chamber (RASC). The RASC (a small clean-room of 1.4m 3) incorporates aerodynamic particle size detection, viable and non-viable sampling devices, real-time CO 2 monitoring, and cough sound-recording. Microbiological culture and droplet digital polymerase chain reaction (ddPCR) were used to detect Mtb in each of the bio-aerosol collection devices. Results:  Mtb was detected in 27/35 (77.1%) of aerosol samples; 15/35 (42.8%) samples were positive by mycobacterial culture and 25/27 (92.96%) were positive by ddPCR. Culturability of collected bacilli was not predicted by radiographic evidence of pulmonary cavitation, sputum smear positivity. A correlation was found between cough rate and culturable bioaerosol. Mtb was detected on all viable cascade impactor stages with a peak at aerosol sizes 2.0-3.5μm. This suggests a median of 0.09 CFU/litre of exhaled air (IQR: 0.07 to 0.3 CFU/l) for the aerosol culture positives and an estimated median concentration of 4.5x10 7 CFU/ml (IQR: 2.9x10 7-5.6x10 7) of exhaled particulate bio-aerosol. Conclusions:  Mtb was identified in bio-aerosols exhaled by the majority of untreated TB patients using the RASC. Molecular detection was more sensitive than mycobacterial culture on solid media, suggesting that further studies are required to determine whether this reflects a significant proportion of differentially detectable bacilli in these samples

    Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients [version 1; referees: 2 approved, 1 approved with reservations]

    No full text
    Background: Tuberculosis (TB) is predominantly an airborne disease. However, quantitative and qualitative analysis of bio-aerosols containing the aetiological agent, Mycobacterium tuberculosis (Mtb), has proven very challenging. Our objective is to sample bio-aerosols from newly diagnosed TB patients for detection and enumeration of Mtb bacilli. Methods: We monitored each of 35 newly diagnosed, GeneXpert sputum-positive, TB patients during 1 hour confinement in a custom-built Respiratory Aerosol Sampling Chamber (RASC). The RASC (a small clean-room of 1.4m3) incorporates aerodynamic particle size detection, viable and non-viable sampling devices, real-time CO2 monitoring, and cough sound-recording. Microbiological culture and droplet digital polymerase chain reaction (ddPCR) were used to detect Mtb in each of the bio-aerosol collection devices. Results: Mtb was detected in 27/35 (77.1%) of aerosol samples; 15/35 (42.8%) samples were positive by mycobacterial culture and 25/27 (92.96%) were positive by ddPCR. Culturability of collected bacilli was not predicted by radiographic evidence of pulmonary cavitation, sputum smear positivity, or cough rate. Mtb was detected on all viable cascade impactor stages with a peak at aerosol sizes 2.0-3.5μm. This suggests a median of 0.09 CFU/litre of exhaled air (IQR: 0.07 to 0.3 CFU/l) for the aerosol culture positives and an estimated median concentration of 4.5x107 CFU/ml (IQR: 2.9x107-5.6x107) of exhaled particulate bio-aerosol. Conclusions: Mtb was identified in bio-aerosols exhaled by the majority of untreated TB patients using the RASC. Molecular detection was more sensitive than mycobacterial culture on solid media, suggesting that further studies are required to determine whether this reflects a significant proportion of differentially detectable bacilli in these samples

    Real-time investigation of tuberculosis transmission: developing the Respiratory Aerosol Sampling Chamber (RASC)

    Get PDF
    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis ( Mtb ) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb , as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose physical dimensions suggested the capacity for travel deep into the alveolar spaces of the human lung

    Isolation and visualization of viable mycobacteria in the RASC.

    No full text
    <p>(A) <i>M</i>. <i>smegmatis</i>::<i>gfp</i> growth on solid 7H10 agar plates from the Six-Stage Viable Andersen Cascade Impactor after wet release of 200 μl diluted culture into the RASC (30 000, 3000 and 300 colony forming units—CFU). The columns indicate the particle sizes captured on each plate across the 6 stages of the impactor, and the rows indicate the estimated total number of CFU passing through the impactor. Each release was repeated three times and the mean and SD for each plate are presented below the typical growth pattern distribution seen in the particle release. In all the releases the sampling was run for 5 minutes at 28 l/min resulting in the potential total capture of 3000, 300 and 30 CFU respectively. (B) SEM (left) and fluorescent microscopy (right) of <i>M</i>. <i>smegmatis</i>::<i>gfp</i> isolated on a PM10 impactor following experimental release.</p

    The myxobacterial antibiotic myxovalargin: Biosynthesis, structural revision, total synthesis and molecular characterization of ribosomal inhibition

    No full text
    Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. Pharmacokinetic and initial in vivo efficacy studies indicated that myxovalargin and analogues show potential for development as an antibacterial agent
    corecore