260 research outputs found
Sparsity-Based Error Detection in DC Power Flow State Estimation
This paper presents a new approach for identifying the measurement error in
the DC power flow state estimation problem. The proposed algorithm exploits the
singularity of the impedance matrix and the sparsity of the error vector by
posing the DC power flow problem as a sparse vector recovery problem that
leverages the structure of the power system and uses -norm minimization
for state estimation. This approach can provably compute the measurement errors
exactly, and its performance is robust to the arbitrary magnitudes of the
measurement errors. Hence, the proposed approach can detect the noisy elements
if the measurements are contaminated with additive white Gaussian noise plus
sparse noise with large magnitude. The effectiveness of the proposed
sparsity-based decomposition-DC power flow approach is demonstrated on the IEEE
118-bus and 300-bus test systems
Forecasting Remission Time of a Treatment Method for Leukemia as an Application to Statistical Inference Approach
In this paper, Weibull-Linear Exponential distribution (WLED) has been investigated whether being it is a well - fit distribution to a clinical real data. These data represent the duration of remission achieved by a certain drug used in the treatment of leukemia for a group of patients. The statistical inference approach is used to estimate the parameters of the WLED through the set of the fitted data. The estimated parameters are utilized to evaluate the survival and hazard functions and hence assessing the treatment method through forecasting the duration of remission times of patients. A two-sample prediction approach has been applied to obtain a predictive sample based on the Bayes estimates of the parameters. The statistical inference approach is applied to the case of censored data namely Type-II hybrid censoring scheme, which is common in clinical studies
Weibull-Linear Exponential Distribution and Its Applications
In this article, a new four-parameter lifetime distribution, namely, the Weibull-Linear exponential distribution is defined and studied. Several of its structural properties such as quartiles, moments, mean waiting time, mean residual lifetime, Renyi entropy, mode, and order statistics are derived. Based on the idea of the Weibull T − X family, the new density function of this model is developed. The model parameters, as well as some of the lifetime parameters (reliability and failure rate functions), are estimated using the maximum likelihood method. Asymptotic confidence intervals estimates of the model parameters are also evaluated by using the Fisher information matrix. Moreover, to construct the asymptotic confidence intervals of the reliability and failure rate functions, we need to find their variance of them, which are approximated by the delta method. A real data set is used to illustrate the application of the Weibull-Linear Exponential distribution
A "missing" family of classical orthogonal polynomials
We study a family of "classical" orthogonal polynomials which satisfy (apart
from a 3-term recurrence relation) an eigenvalue problem with a differential
operator of Dunkl-type. These polynomials can be obtained from the little
-Jacobi polynomials in the limit . We also show that these polynomials
provide a nontrivial realization of the Askey-Wilson algebra for .Comment: 20 page
Reconfigurable Soft Robots by Building Blocks
Soft robots are of increasing interest as they can cope with challenges that are poorly addressed by conventional rigid-body robots (e.g., limited flexibility). However, due to their flexible nature, the soft robots can be particularly prone to exploit modular designs for enhancing their reconfigurability, that is, a concept which, to date, has not been explored. Therefore, this paper presents a design of soft building blocks that can be disassembled and reconfigured to build different modular configurations of soft robots such as robotic fingers and continuum robots. First, a numerical model is developed for the constitutive building block allowing to understand their behavior versus design parameters, then a shape optimization algorithm is developed to permit the construction of different types of soft robots based on these soft building blocks. To validate the approach, 2D and 3D case studies of bio-inspired designs are demonstrated: first, soft fingers are introduced as a case study for grasping complex and delicate objects. Second, an elephant trunk is used for grasping a flower. Third, a walking legged robot. These case studies prove that the proposed modular building approach makes it easier to build and reconfigure different types of soft robots with multiple complex shapes
Self-aligned nanoscale SQUID on a tip
A nanometer-sized superconducting quantum interference device (nanoSQUID) is
fabricated on the apex of a sharp quartz tip and integrated into a scanning
SQUID microscope. A simple self-aligned fabrication method results in
nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An
aluminum nanoSQUID with an effective area of 0.034 m displays flux
sensitivity of 1.8 \mu_B/\mathrm{Hz}^{1/2}$ and high bandwidth, the SQUID on a tip is a highly
promising probe for nanoscale magnetic imaging and spectroscopy.Comment: 14 manuscript pages, 5 figure
Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism
In this paper, a detailed description of the optical coupling into a Whispering Gallery Mode (WGM) resonator through a prism via frustrated total internal reflection (FTIR) is presented. The problem is modeled as three media with planar interfaces and closed expressions for FTIR are given. Then, the curvature of the resonator is taken into account and the mode overlap is theoretically studied. A new analytical expression giving the optimal geometry of a disc-shaped or ring-shaped resonator for maximizing the intra-cavity circulating power is presented. Such expression takes into consideration the spatial distribution of the WGM at the surface of the resonator, thus being more accurate than the currently used expressions. It also takes into account the geometry of the prism. It is shown an improvement in the geometry values used with the current expressions of about 30%. The reason why the pump laser signal can be seen in experiments under critical coupling is explained on this basis. Then, the conditions required for exciting the highest possible optical power inside the resonator are obtained. The aim is to achieve a highly-efficient up-conversion of a THz signal into the optical domain via the second-order nonlinearity of the resonator material.This work has been financially supported by "DiDaCTIC: Desarrollo de un sistema de comunicaciones inalámbrico en rango THz integrado de alta tasa de datos", TEC2013-47753-C3, CAM S2013/ICE-3004 "DIFRAGEOS" projects, "Proyecto realizado con la Ayuda Fundación BBVA a Investigadores y Creadores Culturales 2016" and "Estancias de movilidad de profesores PRX16/00021"
Improving the efficiency and stability of in-air fabricated perovskite solar cells using the mixed antisolvent of methyl acetate and chloroform
Antisolvents play a significant role in obtaining high-quality perovskite films during the fabrication process. This paper reports a novel mixture of two antisolvents (methyl acetate and chloroform) that proves effective for fabricating high-quality perovskite films in a high humidity ambient. The results show that the use of methyl acetate alone as the antisolvent enables the fabrication of dense perovskite films (MAPbI3) in a high humidity ambient, but with a rough surface, while mixing methyl acetate with an appropriate amount of chloroform produces not only dense perovskite films but also smooth surfaces. As a result, the power conversion efficiency (PCE) is increased from 17.1% of the devices treated with methyl acetate alone to 18.6% of the devices treated with the mixed antisolvent of methyl acetate (70%) and chloroform (30%). The stability of the devices was also improved significantly for the devices treated with the mixed antisolvent of methyl acetate (85%) and chloroform (15%), which exhibit a slow degradation of 7% in PCE after 552Â h of storage, compared to 22% for the devices treated with methyl acetate alone
Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts
The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV–Vis, XPS, N2 adsorption), as well as with ammonia adsorption microcalorimetry. Good results are obtained with initial glycerol conversions of over 70% and with 50–70% selectivity to acrolein. We investigate the influence of changing the catalyst acid strength by varying the niobia content and catalyst calcination temperature. Glycerol conversion and acrolein selectivity depend on the surface acid strength. Catalyst deactivation by coking is also observed, but simple oxidative treatment in air restores the activity of the catalysts completely
Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus: a paradigm shift in understanding the epidemiology of footrot in sheep
Sites of persistence of bacterial pathogens contribute to disease dynamics of bacterial diseases. Footrot is a globally important bacterial disease that reduces health and productivity of sheep. It is caused by Dichelobacter nodosus, a pathogen apparently highly specialised for feet, while Fusobacterium necrophorum, a secondary pathogen in footrot is reportedly ubiquitous on pasture. Two prospective longitudinal studies were conducted to investigate the persistence of D. nodosus and F. necrophorum in sheep feet, mouths and faeces, and in soil. Molecular tools were used to detect species, strains and communities. In contrast to the existing paradigm, F. necrophorum persisted on footrot diseased feet, and in mouths and faeces; different strains were detected in feet and mouths. D. nodosus persisted in soil and on diseased, but not healthy, feet; similar strains were detected on both healthy and diseased feet of diseased sheep. We conclude that D. nodosus and F. necrophorum depend on sheep for persistence but use different strategies to persist and spread between sheep within and between flocks. Elimination of F. necrophorum would be challenging due to faecal shedding. In contrast D. nodosus could be eliminated if all footrot-affected sheep were removed and fade out of D. nodosus occurred in the environment before re-infection of a foot
- …