2 research outputs found

    Main group tellurium heterocycles anchored by a P2VN2 scaffold and their sulfur/selenium analogues

    Get PDF
    The authors are grateful to the EPSRC, the EPSRC National Mass Spectrometry Service Centre (NMSSC) Swansea, the School of Chemistry St. Andrews, EaStCHEM, and NSERC Canada for financial support.A comprehensive investigation of reactions of alkali-metal derivatives of the ditelluro dianion [TePV(NtBu)(μ-NtBu)]22– (L2–, E = Te) with p-block element halides produced a series of novel heterocycles incorporating P2VN2 rings, tellurium, and group 13–16 elements. The dianion engages in Te,Te′-chelation to the metal center in Ph2Ge and R2Sn (R = tBu, nBu, Ph) derivatives; similar behavior was noted for group 14 derivatives of L2– (E = S, Se). In the case of group 13 trihalides MCl3 (M = Ga, In), neutral spirocyclic complexes (L)M[NtBu(Te)PV(μ-NtBu)2PIIIN(H)tBu)] (M = Ga, In) comprised of a Te,Te′-chelated ligand L2– and a N,Te-bonded ligand resulting from loss of Te and monoprotonation were obtained. In reactions with RPCl2 (R = tBu, Ad, iPr2N) a significant difference was observed between Se- and S-containing systems. In the former case, Se,Se′-chelated derivatives were formed in high yields, whereas the N,S-chelated isomers predominated for sulfur. All complexes were characterized by multinuclear (1H, 31P, 77Se, 119Sn, and 125Te) NMR spectroscopy; this technique was especially useful in the analysis of the mixture of (L)(Se) and (L)(SeSe) obtained from the reaction of Se2Cl2 with L2– (E = Te). Single-crystal X-ray structures were obtained for the spirocyclic In complex (9), (L)GePh2 (E = Te, 10), (L)SntBu2 (E = Te, 12a); E = Se, 12aSe, E = S, 12aS) and (L)(μ-SeSe) (E = Te, 16).PostprintPostprintPeer reviewe

    Synthetic, structural, and spectroscopic studies of sterically crowded tin-chalcogen acenaphthenes

    No full text
    A series of sterically encumbered peri-substituted acenaphthenes have been prepared containing chalcogen and tin moieties at the close 5,6-positions (Acenap[SnPh3][ER], Acenap = acenaphthene-5,6-diyl, ER = SPh (1), SePh (2), TePh (3), SEt (4); Acenap[SnPh2Cl][EPh], E = S (5), Se (6); Acenap[SnBu2Cl][ER], ER = SPh(7), SePh (8), SEt (9)). Two geminally bis(peri-substituted) derivatives ({Acenap[SPh2]}2SnX2, X = Cl (10), Ph (11)) have also been prepared, along with the bromo–sulfur derivative Acenap(Br)(SEt) (15). All 11 chalcogen–tin compounds align a Sn–CPh/Sn–Cl bond along the mean acenaphthene plane and position a chalcogen lone pair in close proximity to the electropositive tin center, promoting the formation of a weakly attractive intramolecular donor–acceptor E···Sn–CPh/E···Sn–Cl 3c-4e type interaction. The extent of E→Sn bonding was investigated by X-ray crystallography and solution-state NMR and was found to be more prevalent in triorganotin chlorides 5–9 in comparison with triphenyltin derivatives 1–4. The increased Lewis acidity of the tin center resulting from coordination of a highly electronegative chlorine atom was found to greatly enhance the lp(E)−σ*(Sn–Y) donor–acceptor 3c-4e type interaction, with substantially shorter E–Sn peri distances observed in the solid state for triorganotin chlorides 5–9 (∼75% ∑rvdW) and significant 1J(119Sn,77Se) spin–spin coupling constants (SSCCs) observed for 6 (163 Hz) and 8 (143 Hz) in comparison to that for the triphenyltin derivative 2 (68 Hz). Similar observations were observed for geminally bis(peri-substituted) derivatives 10 and 11.</p
    corecore