19 research outputs found

    Syn-tectonic emplacement of deep-marine reservoir sands at rifting margins: Including a case study from the Vøring Basin

    No full text
    This study focuses on the interplay between large-scale relay ramps and sedimentladen flows, specifically low-density turbidity currents that form one end-member of subaqueous sediment gravity flows. The main objective is to better understand the impact of syn-rift faulting on subaqueous sediment routes and to develop predictive depositional models at rifting margins. Much of the knowledge on sediment dispersal across fault zones comes from the continental realm, but in subaqueous settings only little is known about the effect of tectonic activity on the pathways of gravity flows. Footwall drainage in active rift settings is generally directed away from the basin, but a minority of sedimentary flows enters the basin across the border fault system. Relay ramps between en-echelon faults may thereby act as local entry points and sediment pathways for subaerial flows, providing access to large catchment areas and influencing sediment distribution. Their impact on sedimentladen subaqueous gravity flows, however, is barely studied. Understanding the effects of syn-sedimentary faulting on sediment dispersal is of paramount importance to better locate potential reservoir sands in rift sequences – the precursors of slope- and basin-floor fans in fully developed passive continental margins that are a major exploration target in many areas. In order to achieve the aim of this thesis a novel approach is developed, combining laboratory analogue experiments with numerical flow simulations. The results of this conceptual experimental study are compared to subsurface Palaeocene syn-rift data in the Vøring Basin offshore Norway, a frontier area in the exploration of turbidite systems, as well as with various field examples.GeotechnologyCivil Engineering and Geoscience

    Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites

    No full text
    Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and (13)C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2 Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity

    Selective Packaging in Murine Coronavirus Promotes Virulence by Limiting Type I Interferon Responses

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Selective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packaging in vitro and on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negative-sense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normally in vitro but caused dramatically reduced lethality and weight loss in vivo. PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant viruses in vivo. PS mutant viruses remained attenuated in MAVS−/− and Toll-like receptor 7-knockout (TLR7−/−) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/beta receptor-knockout (IFNAR−/−) mice or in MAVS−/− mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection

    Selective Packaging in Murine Coronavirus Promotes Virulence by Limiting Type I Interferon Responses

    No full text
    Selective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packaging in vitro and on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negative-sense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normally in vitro but caused dramatically reduced lethality and weight loss in vivo. PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant viruses in vivo. PS mutant viruses remained attenuated in MAVS−/− and Toll-like receptor 7-knockout (TLR7−/−) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/beta receptor-knockout (IFNAR−/−) mice or in MAVS−/− mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection.Coronaviruses (CoVs) produce many types of RNA molecules during their replication cycle, including both positive- and negative-sense genomic and subgenomic RNAs. Despite this, coronaviruses selectively package only positive-sense genomic RNA into their virions. Why CoVs selectively package their genomic RNA is not clear, as disruption of the packaging signal in MHV, which leads to loss of selective packaging, does not affect genomic RNA packaging or virus replication in cultured cells. This contrasts with other viruses, where disruption of selective packaging generally leads to altered replication. Here, we demonstrate that in the absence of selective packaging, the virulence of MHV was significantly reduced. Importantly, virulence was restored in the absence of interferon signaling, indicating that selective packaging is a mechanism used by CoVs to escape innate immune detection
    corecore