6 research outputs found

    Genomic insights into rapid speciation within the world’s largest tree genus Syzygium

    Get PDF
    Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification

    Genomic insights into rapid speciation within the world's largest tree genus Syzygium

    Get PDF
    Acknowledgements Y.W.L. was supported by a postgraduate scholarship research grant from the Ministry of National Development, Singapore awarded through the National Parks Board, Singapore (NParks; NParks’ Garden City Fund). Principal research funding from NParks and the School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, is acknowledged. We thank Peter Preiser, Associate Vice President for Biomedical and Life Sciences, for facilitating NTU support, and Kenneth Er, CEO of NParks, for facilitating research funding through that organisation. V.A.A. and C.L. were funded by SBS, NTU for a one-year research leave. V.A.A. and C.L. also acknowledge support from the United States National Science Foundation (grants 2030871 and 1854550, respectively). S.R. was supported by a postdoctoral research fellowship under the NTU Strategic Plant Programme. S.R. and N.R.W.C. acknowledge funding from NTU start-up and the Academy of Finland (decisions 318288, 319947) grants to J.S. Fieldwork conducted by Y.W.L. was supported by an Indonesian Government RISTEK research permit (Application ID: 1517217008) and an Access License from the Sabah State government [JKM/MBS.1000-2/2JLD.7(84)]. T.N.C.V. is grateful to the Assemblée de la Province Nord and Assemblée de la Province Sud (New Caledonia) for facilitating relevant collection permits. A.N. was partly supported by the Research Project Promotion Grant (Strategic Research Grant No. 17SP01302) from the University of the Ryukyus, and partly by the Environment Research and Technology Development Fund (JPMEERF20204003) from the Environmental Restoration and Conservation Agency of Japan. Fieldwork in Fiji conducted by R.B. was hosted and facilitated by Elina Nabubuniyaka-Young (The Pacific Community’s Centre for Pacific Crops and Trees, Fiji). We thank the NTU-Smithsonian Partnership for tree data obtained for the Bukit Timah Nature Reserve (BTNR) long-term forest dynamics plots. Administrative support provided by Mui Hwang Khoo-Woon and Peter Ang at the molecular laboratory of the Singapore Botanic Gardens (SBG) is acknowledged. Rosie Woods and Imalka Kahandawala (DNA and Tissue Bank, Royal Botanic Gardens, Kew) facilitated additional DNA samples. Daniel Thomas (SBG) and Yan Yu (Sichuan University) commented on biogeographical analyses. NovogeneAIT in Singapore is acknowledged for personalised sequencing service.Peer reviewedPublisher PD

    Genomic insights into rapid speciation within the world's largest tree genus Syzygium

    Get PDF
    The relative importance of the mechanisms underlying species radiation remains unclear. Here, the authors combine reference genome assembly and population genetics analyses to show that neutral forces have contributed to the radiation of the most species-rich tree genus Syzygium. Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.Peer reviewe

    Identification, sexual dimorphism and aspects of the natural history of Sapria himalayana (Rafflesiaceae) on Vietnam’s Lang Biang Plateau

    No full text
    Abstract Background Sapria is a distinctive and narrowly host-specific holoparasitic genus belonging to the Rafflesiaceae. Sapria himalayana, rare throughout its range from NE India, SW China, Thailand to Vietnam, is a little-understood species first recorded for Vietnam in 1959, and only recollected there over half a century later in February 2017. This has facilitated an assessment of its taxonomic identity and our understanding of its morphology and natural history aspects. Results Six populations of Sapria at Vietnam’s Tuyền Lâm Lake, and another two populations at the Nam Ban Protection Forest and the Cam Ly area were found, in an area of about 20 km in radius. Previously documented size attributes, morphological details and colour patterns allowed clear identification of the Vietnamese taxon as Sapria himalayana f. albovinosa. A full description of the species for Vietnam is provided. Past authors have distinguished the sexes by column form and structure, colour of the upper disk, details of the inner surface of the perigone tube, and presence of ovarial chambers below the column in the female. We present additional observations that male flowers consistently have more steeply held perigone lobes than females, in which the lobes were more spread out at wider angles in fully open flowers, and that males have a much lower cupule than females. The latter difference, especially, appears to be useful for quick determination of the sex even in the advanced floral bud stage. The host plant was the lianescent Tetrastigma laoticum (Vitaceae), but superficially it was not possible to ascertain the clonal relationship of neighbouring host lianas. Male and female flowers were found mixed together in the same cluster from one individual liana. Potential pollinators included Calliphorid and Stratiomyid flies observed visiting open flowers. Conclusions Our observations have added to an increased understanding of the morphology of this highly specialized parasitic life form. More than this, we have ascertained its occurrence in Vietnam, with information made available to authorities of the Lâm Đồng Province where our studies were conducted, for the sites to be specially demarcated for conservation and carefully managed tourism use

    Genomic insights into rapid speciation within the world’s largest tree genus [PREPRINT].

    No full text
    Species radiations have long fascinated biologists, but the contribution of adaptation to observed diversity and speciation is still an open question. Here, we explore this question using the clove genus, Syzygium, the world’s largest genus of tree species comprising approximately 1200 species. We dissect Syzygium diversity through shotgun sequencing of 182 distinct species and 58 additional as-yet unidentified taxa, and assess their genetic diversity against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that Syzygium grande shares a whole genome duplication (WGD) event with other Myrtales. Genomic analyses confirm that Syzygium originated in Sahul (Australia-New Guinea), and later diversified eastward to the Hawaiian Islands and westward in multiple independent migration events. The migrations were associated with bursts of speciation events, visible by poorly resolved branches on phylogenies and networks, some of which were likely confounded by incomplete lineage sorting. Clinal genomic variation in some sublineages follows phylogenetic progression, which coupled with sympatric occurrences of distantly related species suggests that both geographic and ecological speciation have been important in the diversification of Syzygium. Together, these results point to a mixture of both neutral and adaptive drivers having contributed to the radiation of the genus
    corecore