21 research outputs found

    Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    Get PDF
    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging—they are relatively invisible via angiography—and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R^2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images

    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

    Get PDF
    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart Circ Physiol 304: H1455-H1470, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00539.2012.-Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation

    Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    Get PDF
    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging—they are relatively invisible via angiography—and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R^2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS

    Get PDF
    Background: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). Methods: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. Results: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. Conclusions: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography – comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    A deep learning approach to classify atherosclerosis using intracoronary optical coherence tomography

    No full text
    Optical coherence tomography (OCT) is a fiber-based intravascular imaging modality that produces high-resolution tomographic images of artery lumen and vessel wall morphology. Manual analysis of the diseased arterial wall is time consuming and sensitive to inter-observer variability; therefore, machine-learning methods have been developed to automatically detect and classify mural composition of atherosclerotic vessels. However, none of the tissue classification methods include in their analysis the outer border of the OCT vessel, they consider the whole arterial wall as pathological, and they do not consider in their analysis the OCT imaging limitations, e.g. shadowed areas. The aim of this study is to present a deep learning method that subdivides the whole arterial wall into six different classes: calcium, lipid tissue, fibrous tissue, mixed tissue, non-pathological tissue or media, and no visible tissue. The method steps include defining wall area (WAR) using previously developed lumen and outer border detection methods, and automatic characterization of the WAR using a convolutional neural network (CNN) algorithm. To validate this approach, 700 images of diseased coronary arteries from 28 patients were manually annotated by two medical experts, while the non-pathological wall and media was automatically detected based on the Euclidian distance of the lumen to the outer border of the WAR. Using the proposed method, an overall classification accuracy 96% is reported, indicating great promise for clinical translation.National Institutes of Health (U.S.) (Grant GM 49039

    Computational Cardiology

    No full text
    Computational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space. We focus on the means by that to leverage and coalesce these multiple disciplines to advance translational science and computational cardiology. Analyzing the scientific trends and understanding the current needs we present our perspective for the future of cardiovascular treatment.National Institutes of Health (U.S.) (Grant GM 49039

    Hemodynamic consequences of a multilayer flow modulator in aortic dissection

    No full text
    Abstract Aortic dissections are challenging for it remains perplexing to determine when surgical, endovascular, or medical therapies are optimal. We studied the effect of the multilayer flow modulator (MFM) device in patients with different forms of type-B aortic dissections. CT scans were performed pre-, immediately post-MFM implantation, and multiple times within a 24-month follow-up. Three-dimensional reconstructions were created from these scans and the multilayer or single-layer mesh device placed virtually into the true lumen. We observed that MFM device can sufficiently restore flow perfusion, reduce the false lumen, eliminate local flow recirculation, and reduce wall shear stress distribution globally. Single-layer devices can reduce false lumen dimensions; however, they generate local disturbance and recirculation zones in selected areas at specific time points. Moreover, in polar extremes of dissection, the MFM device restored flow to vital organs perfusing vessels independent of effects on luminal patency. Management of aortic dissections should focus on modulation of blood flow, suppression of local recirculation, and restoration of vital organ perfusion rather than primarily restoring vascular lumen morphology. While the latter restores the geometry of the true lumen, only the former restores homeostasis. Graphical abstrac

    Neural Network Training Data Profoundly Impacts Texture-Based Intravascular Image Segmentation

    No full text
    Segmentation of variably differentiated and low-frequency elements in a complex image is challenging. Improving sensitivity demands often prohibitive decreases in specificity. This is particularly the case in intravascular imaging, where detection of heterogeneously dispersed lesion elements, which are often less evident than normal structures, is essential. Modalities including optical coherence tomography (OCT) provide cross-sectional images of coronary arteries that reveal atherosclerotic plaques. Manual plaque segmentation is time consuming and error prone; automated methods are quicker but dictate accuracy tradeoffs. We developed a neural network-based method for automatic detection of calcified plaques in OCT images using texture-based features and examined how underlying training data distribution impacts sensitivity and predictive value. The method assesses each pixel, rather than a patch, as an independent unit, enabling precise control of training data distribution while simultaneously decreasing reliance on massive imaging datasets for training. Pixels from 30 manually annotated OCT images of calcified plaques were used to train the neural network. Several texture measures were computed for the local neighborhood of each pixel and used as inputs to a multi-layered neural network. The ratio of pixels of each class in the training dataset was then varied and the resulting network performance was compared. Positive predictive value and sensitivity ranged from 0.69 to 0.77 and 0.35 to 0.86, respectively, as the ratio of non-calcified to calcified pixels varied from around 15 to 1, with inverse changes in specificity. The results clearly demonstrate that appropriately balanced data must be carefully curated with thoughtful consideration of the model's application and the clinical imperative being addressed
    corecore