6 research outputs found

    Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles

    No full text
    Due to the resistance to drugs, studies involving the combination and controlled release of different agents are gradually increasing. In this study, two different active ingredients, known to have antibacterial and antiparasitic activities, were encapsulated into single polymeric nanoparticles. After co-encapsulation their antibacterial and antileishmanial activity was enhanced approximately 5 and 250 times, respectively. Antibacterial and antileishmanial activities of caffeic acid phenethyl ester and juglone loaded, multifunctional nanoformulations (CJ4-CJ6-CJ8) were also evaluated for the first time in the literature comparatively with their combined free formulations. The antibacterial activity of the multifunctional nanoformulation (CJ8) were found to have a much higher activity (MIC values 6.25 and 12.5 μg ml-1 for S. aureus and E. coli, respectively) than all other formulations. Similar efficacy for CJ8 was obtained in the antiparasitic study against the Leishmania promastigotes and the IC50 was reduced to 0.1263 μg ml-1. The high activity of multifunctional nanoparticles is not only due to the synergistic effect of the active molecules but also by the encapsulation into polymeric nanoparticles. Therefore, it has been shown in the literature for the first time that the biological activity of molecules whose activity is increased by the synergistic effect can be improved with nanosystems

    Utility of the microculture method for Leishmania detection in non-invasive samples obtained from a blood bank

    No full text
    In recent years, the role of donor blood has taken an important place in epidemiology of Leishmaniasis. According to the WHO, the numbers of patients considered as symptomatic are only 5-20% of individuals with asymptomatic leishmaniasis. In this study for detection of Leishmania infection in donor blood samples, 343 samples from the Capa Red Crescent Blood Center were obtained and primarily analyzed by microscopic and serological methods. Subsequently, the traditional culture (NNN), Immunochromatographic test (ICT) and Polymerase Chain Reaction (PCR) methods were applied to 21 samples which of them were found positive with at least one method. Buffy coat (BC) samples from 343 blood donors were analyzed: 15 (4.3%) were positive by a microculture method (MCM); and 4 (1.1%) by smear. The sera of these 343 samples included 9 (2.6%) determined positive by ELISA and 7 (2%) positive by IFAT. Thus, 21 of (6.1%) the 343 subjects studied by smear, MCM, IFAT and ELISA techniques were identified as positive for leishmaniasis at least one of the techniques and the sensitivity assessed. According to our data, the sensitivity of the methods are identified as MCM (71%), smear (19%), IFAT (33%), ELISA (42%), NNN (4%), PCR (14%) and IC T (4%). Thus, with this study for the first time, the sensitivity of a MCM was examined in blood donors by comparing MCM with the methods used in the diagnosis of leishmaniasis. As a result, MCM was found the most sensitive method for detection of Leishmania parasites in samples obtained from a blood bank. In addition, the presence of Leishmania parasites was detected in donor bloods in Istanbul, a non-endemic region of Turkey, and these results is a vital importance for the health of blood recipients. (C) 2013 Elsevier B.V. All rights reserved
    corecore