24 research outputs found
Impact of arterial stiffness on white matter microstructure in the elderly
La rigiditĂ© artĂ©rielle fait rĂ©fĂ©rence Ă la perte d'Ă©lasticitĂ© principalement dans les grandes artĂšres telles que l'aorte et les carotides. On sait que la rigiditĂ© artĂ©rielle chroniquement Ă©levĂ©e contribue Ă des modifications vasculaires cĂ©rĂ©brales telles que des lĂ©sions parenchymateuses de la substance blanche cĂ©rĂ©brale via une modification du flux sanguin cĂ©rĂ©bral. En particulier, parmi les structures perfusĂ©es par les artĂ©rioles fournies par les artĂšres cĂ©rĂ©brales antĂ©rieure et moyenne, le corps calleux, la capsule interne, la corona radiata et le faisceau longitudinal supĂ©rieur sont les plus vulnĂ©rables Ă lâhypoperfusion. Des Ă©tudes antĂ©rieures ont montrĂ© que l'augmentation de la rigiditĂ© artĂ©rielle Ă©valuĂ©e par la vitesse de l'onde de pouls carotide-fĂ©morale (cfPWV) est associĂ©e Ă une diminution de l'anisotropie fractionnelle (FA) et Ă une augmentation de la diffusivitĂ© radiale (RD). On a Ă©mis l'hypothĂšse que les altĂ©rations au niveau des rĂ©gions vulnĂ©rables de la substance blanche (par exemple, le corps calleux, la capsule interne) seraient probablement liĂ©es Ă la dĂ©myĂ©linisation axonale. Cependant, bien que la RD a auparavant Ă©tĂ© corrĂ©lĂ©e avec la dĂ©myĂ©linisation axonale, l'imagerie de diffusion est principalement aveugle Ă la myĂ©line. En revanche, l'imagerie par transfert de magnĂ©tisation (MT) est une mĂ©trique adaptĂ©e pour estimer la fraction volumique de myĂ©line. De plus, malgrĂ© leur sensibilitĂ© Ă l'organisation des fibres axonales, les mĂ©triques de tenseur de diffusion (DTI) telles que les FA et RD manquent de spĂ©cificitĂ© pour la microstructure tissulaire individuelle. Des modĂšles microstructuraux plus avancĂ©s tels que lâimagerie dispersion et de l'orientation des neurites (NODDI) fournissent des outils pour dissĂ©quer les changements microstructuraux derriĂšre les mesures DTI.
Dans l'article 1, nous avons utilisĂ© les mĂ©triques de DTI et basĂ© sur le MT pour examiner de plus prĂšs l'interaction entre la rigiditĂ© artĂ©rielle et la microstructure de la substance blanche chez les personnes ĂągĂ©es de plus de 65 ans. Nous avons constatĂ© que la mesure de rĂ©fĂ©rence absolue de la rigiditĂ© artĂ©rielle, la mesure de la vitesse de l'onde de pouls entre lâartĂšre fĂ©morale et carotidienne (cfPWV) Ă©tait associĂ©e Ă l'organisation axonale des fibres telle que reflĂ©tĂ©e par FA et RD plutĂŽt qu'Ă la dĂ©myĂ©linisation dans les rĂ©gions de la substance blanche qui ont Ă©tĂ© prĂ©cĂ©demment dĂ©signĂ©es comme vulnĂ©rables Ă rigiditĂ© artĂ©rielle. Dans notre deuxiĂšme article, nous avons utilisĂ© le modĂšle NODDI pour approfondir la relation entre le cfPWV et l'organisation axonale. Nos rĂ©sultats ont montrĂ© que la cfPWV est positivement associĂ©e Ă la diffusion extracellulaire de l'eau (ISOVF), ce qui signifie que la rigiditĂ© artĂ©rielle peut entraĂźner une dispersion axonale, diminuant la contrainte de directionnalitĂ© de l'eau le long des axones. En outre, nous avons constatĂ© que la rigiditĂ© artĂ©rielle est associĂ©e Ă une augmentation de la densitĂ© des fibres dans le corps calleux tel que mesurĂ© par lâICVF, ce qui pourrait suggĂ©rer que les personnes Ă risque plus Ă©levĂ© de dĂ©clin cognitif prĂ©sentent des mĂ©canismes compensatoires prĂ©coces avant l'apparition de signes cliniques de dĂ©clin cognitif.
Compte tenu de la forte interaction entre la rigiditĂ© artĂ©rielle et le dĂ©clin Ă la fois de la structure du cerveau et des fonctions cĂ©rĂ©brales, on peut envisager un avenir meilleur oĂč la rigiditĂ© artĂ©rielle sera mesurĂ©e dans la pratique clinique de routine afin d'identifier les personnes Ă risque plus Ă©levĂ© dâaltĂ©rations de la substance blanche et de dĂ©clin cognitif. Ces personnes pourraient bĂ©nĂ©ficier de programmes multi-interventionnels visant Ă prĂ©server la structure et la fonction cĂ©rĂ©brale. Un seuil de rigiditĂ© artĂ©rielle est donc nĂ©cessaire pour identifier ces individus. L'article 3 prĂ©sente la premiĂšre estimation d'une valeur seuil de cfPWV Ă laquelle la rigiditĂ© artĂ©rielle affecte la microstructure de la substance blanche chez les personnes ĂągĂ©es. Nos rĂ©sultats suggĂšrent que le seuil actuel de 10 m / s de cfPWV adoptĂ© par la SociĂ©tĂ© europĂ©enne d'hypertension n'est peut-ĂȘtre pas le seuil optimal pour diviser les individus en groupes Ă risque neurovasculaire Ă©levĂ© et faible. Au lieu de cela, nos rĂ©sultats suggĂšrent que le seuil de cfPWV est plus susceptible dâĂȘtre autour de 8,5 m / s. Bien que le cfPWV offre une excellente valeur pronostique chez les adultes, il reste malheureusement principalement utilisĂ© dans la recherche en raison du besoin d'experts formĂ©s pour cette mesure. Ă l'inverse, la mesure de l'indice de rigiditĂ© artĂ©rielle (ASI) Ă l'aide de la plĂ©thysmographie suscite un intĂ©rĂȘt croissant ces derniĂšres annĂ©es en raison de son approche simple Ă utiliser. Dans l'article 4, nous avons Ă©tudiĂ© la relation entre l'ASI et la pression pulsĂ©e (PP) qui est une mesure indirecte de la rigiditĂ© artĂ©rielle, avec la FA et les lĂ©sions de la substance blanche chez les participants du UK Biobank. Nous avons constatĂ© que la PP prĂ©dit mieux l'intĂ©gritĂ© de la substance blanche que l'ASI chez les participants de moins de 75 ans. Cette constatation implique que l'ASI de la plĂ©thysmographie ne semble pas ĂȘtre une mesure fiable de la rigiditĂ© artĂ©rielle chez les personnes ĂągĂ©es.
Des Ă©tudes futures sont Ă©videmment nĂ©cessaires pour valider nos rĂ©sultats, en particulier notre seuil de cfPWV. Une fois ce seuil validĂ©, nous envisageons un avenir radieux oĂč la mesure du cfPWV sera non seulement utilisĂ©e pour aider Ă sĂ©lectionner les personnes qui bĂ©nĂ©ficieraient le plus d'un programme multi-interventionnel visant Ă prĂ©server l'intĂ©gritĂ© cĂ©rĂ©brale, mais pourrait Ă©galement ĂȘtre utilisĂ©e pour surveiller lâeffet dâune telle intervention.Arterial stiffness refers to the loss of elasticity mainly in large arteries such as the aorta and carotids. Chronically elevated arterial stiffness contributes to cerebrovascular changes such as cerebral white matter parenchymal damage via an alteration of cerebral blood flow. In particular, among the areas perfused by arterioles supplied by the anterior and middle
cerebral arteries, the corpus callosum, the internal capsule, the corona radiata, and the superior longitudinal fasciculus are more vulnerable to cerebral hypoperfusion. Previous studies have shown that increased arterial stiffness as assessed by carotid-femoral pulse wave velocity (cfPWV) is associated with a decrease in fractional anisotropy (FA) and
increase in radial diffusivity (RD). It was hypothesized that alterations in vulnerable white matter tracts (e.g. corpus callosum, internal capsule) are likely to be related to axonal demyelination. However, while RD was previously correlated with axonal demyelination, diffusion imaging is mostly blind to myelin. In contrast magnetization transfer (MT) imaging is
a tailored metric to estimate myelin volume fraction. Moreover, despite their sensitivity to axon fiber organization, diffusion tensor metrics (DTI) such as FA and RD lack specificity for individual tissue microstructure. More advanced microstructural model such as neurite orientation dispersion and density imaging (NODDI) give tools to disecate the microstructural
changes behind DTI metrics.
In Article 1 we used DTI and MT based metric to look more closely at the interplay between arterial stiffness and white matter microstructure in older adults > 65 years old. We found that the gold standard measure of arterial stiffness, the measure of carotid femoral pulse wave velocity (cfPWV) was associated with axonal fiber organization as reflected by FA and RD rather than demyelination in the white matter regions that have been previously denoted as vulnerable to arterial stiffness. In our second Article, we used the NODDI model to take a further look at the relationship between cfPWV and axonal organization. Our results showed that cfPWV is positively associated with the extracellular water diffusion (ISOVF) which means that arterial stiffness may result in axonal dispersion, lessening the constraint of water directionality along axons. In addition, we found that arterial stiffness is associated with increased fibers density in the corpus callosum as measured by ICVF which could suggest that individuals at higher risk for cognitive decline demonstrate early compensatory
mechanisms before the appearance of clinical signs of cognitive decline.
Considering the strong interplay between arterial stiffness and decline both in brain structure and function, one can envision a bright future where arterial stiffness would be measured in routine clinical practice in order to identify individuals at higher risk for white matter changes and cognitive decline. Such individuals could benefit from multi-interventions programs
aiming to preserve brain structure and function. A cut-off arterial stiffness is thus needed to identify these individuals. Article 3 presents the first estimation of an cfPWV cut-off value at which arterial stiffness impacts the white matter microstructure in older adults. Our results suggested that the current 10 m/s cfPWV cut-off adopted by the European Society of
Hypertension may not be the optimal threshold to split individuals into high and low neurovascular risk groups. Instead, our findings suggest that the cfPWV cut-off is more likely to fall around 8.5 m/s. While cfPWV provides excellent prognostic value in adults, it remains unfortunately mainly used in research due to the need of trained experts. Conversely,
measure of arterial stiffness index (ASI) using plethysmography is getting increased interest in the last few years due to its simple-to-use approach. In article 4, we investigated the relationship between ASI and pulse pressure (PP), an indirect measure of arterial stiffness, with FA and white matter lesions in participants of the UK Biobank. We found that PP better
predicts white matter integrity compared to ASI in participants younger than 75 years old.
This finding implies that ASI from plethysmography may not be a reliable measure of arterial stiffness in older adults.
Future studies are obviously needed to validate our results, in particular our cfPWV cut-off.
Once such cut-off will be validated, the present author envision a bright future where measure of cfPWV will not only be used to help selecting individuals that would most benefit from a multi intervention program aiming to preserve brain integrity, but could also be used to monitor the effect of such intervention
Relationship between arterial stiffness index, pulse pressure, and magnetic resonance imaging markers of white matter integrity: A UK biobank study
BACKGROUND: Alzheimerâs disease and dementia in general constitute one of the major public health problems of the 21st century. Research in arterial stiffness and pulse pressure (PP) play an important role in the quest to reduce the risk of developing dementia through controlling modifiable risk factors. OBJECTIVE: The aim of the study is to investigate the association between peripheral PP, arterial stiffness index (ASI) and brain integrity, and to discover if ASI is a better predictor of white matter integrity than peripheral PP. MATERIALS AND METHODS: 17,984 participants 63.09 ± 7.31 from the UK Biobank were used for this study. ASI was estimated using infrared light (photoplethysmography) and peripheral PP was calculated by subtracting the diastolic from the systolic brachial blood pressure value. Measure of fractional anisotropy (FA) was obtained from diffusion imaging to estimate white matter microstructural integrity. White matter hyperintensities were segmented from the combined T1 and T2-weighted FLAIR images as a measure of irreversible white matter damage. RESULTS: An important finding is that peripheral PP better predicts white matter integrity when compared to ASI. This finding is consistent until 75 years old. Interestingly, no significant relationship is found between either peripheral PP or ASI and white matter integrity after 75 years old. CONCLUSION: These results suggest that ASI from plethysmography should not be used to estimate cerebrovascular integrity in older adults and further question the relationship between arterial stiffness, blood pressure, and white matter damage after the age of 75 years old
Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability
Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6â±â2.7% and 2.9â±â2.4%), compared to relapsing-remitting patients (1.6â±â2.1%, both Pâ<â0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (Pâ<â0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (râ=â0.31, Pâ<â0.0001), brainstem (râ=â0.45, Pâ<â0.0001) and spinal cord (râ=â0.57, Pâ<â0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (Pâ=â0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions