34 research outputs found

    Phantom Mimicry on the Normal Branch of a DGP-inspired Braneworld Scenario with Curvature Effect

    Full text link
    It has been shown recently that phantom-like effect can be realized on the normal branch of the DGP setup without introduction of any phantom matter neither in the bulk nor on the brane and therefore without violation of the null energy condition. It has been shown also that inclusion of the Gauss-Bonnet term in the bulk action modifies this picture via curvature effects. Here, based on the Lue-Starkman conjecture on the dynamical screening of the brane cosmological constant in the DGP setup, we extend this proposal to a general DGP-inspired f(R,ϕ)f(R,\phi) model that stringy effects in the ultra-violet sector of the theory are taken into account by inclusion of the Gauss-Bonnet term in the bulk action. We study cosmological dynamics of this setup, especially its phantom-like behavior and possible crossing of the phantom divide line especially with a non-minimally coupled quintessence field on the brane. In this setup, scalar field and curvature quintessence are treated in a unified framework.Comment: 25 Figures, To appear in MPL

    Localization of gravity in brane world with arbitrary extra dimensions

    Full text link
    We study the induced 4-dimensional linearized Einstein field equations in an m-dimensional bulk space by means of a confining potential. It is shown that in this approach the mass of graviton is quantized. The cosmological constant problem is also addressed within the context of this approach. We show that the difference between the values of the cosmological constant in particle physics and cosmology stems from our measurements in two different scales, small and large.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:gr-qc/0408004, arXiv:gr-qc/0607067, arXiv:0704.1035, arXiv:0707.3558, arXiv:0710.266

    Modified gravity and its reconstruction from the universe expansion history

    Get PDF
    We develop the reconstruction program for the number of modified gravities: scalar-tensor theory, f(R)f(R), F(G)F(G) and string-inspired, scalar-Gauss-Bonnet gravity. The known (classical) universe expansion history is used for the explicit and successful reconstruction of some versions (of special form or with specific potentials) from all above modified gravities. It is demonstrated that cosmological sequence of matter dominance, decceleration-acceleration transition and acceleration era may always emerge as cosmological solutions of such theory. Moreover, the late-time dark energy FRW universe may have the approximate or exact Λ\LambdaCDM form consistent with three years WMAP data. The principal possibility to extend this reconstruction scheme to include the radiation dominated era and inflation is briefly mentioned. Finally, it is indicated how even modified gravity which does not describe the matter-dominated epoch may have such a solution before acceleration era at the price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE 2006, minor correction

    Some exact solutions of F(R) gravity with charged (a)dS black hole interpretation

    Full text link
    In this paper we obtain topological static solutions of some kind of pure F(R)F(R) gravity. The present solutions are two kind: first type is uncharged solution which corresponds with the topological (a)dS Schwarzschild solution and second type has electric charge and is equivalent to the Einstein-Λ\Lambda-conformally invariant Maxwell solution. In other word, starting from pure gravity leads to (charged) Einstein-Λ\Lambda solutions which we interpreted them as (charged) (a)dS black hole solutions of pure F(R)F(R) gravity. Calculating the Ricci and Kreschmann scalars show that there is a curvature singularity at r=0r=0. We should note that the Kreschmann scalar of charged solutions goes to infinity as r0r \rightarrow 0, but with a rate slower than that of uncharged solutions.Comment: 21 pages, 4 figures, generalization to higher dimensions, references adde

    Crossing the Phantom Divide Line in a DGP-Inspired F(R,ϕ)F(R,\phi)-Gravity

    Full text link
    We study possible crossing of the phantom divide line in a DGP-inspired F(R,ϕ)F(R,\phi) braneworld scenario where scalar field and curvature quintessence are treated in a unified framework. With some specific form of F(R,ϕ)F(R,\phi) and by adopting a suitable ansatz, we show that there are appropriate regions of the parameters space which account for late-time acceleration and admit crossing of the phantom divide line.Comment: 23 Pages, 10 figs, Submitted to JCA

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Reconstruction of f(R)f(R), f(T)f(T) and f(G)f(\mathcal{G}) models inspired by variable deceleration parameter

    Full text link
    We study an special law for the deceleration parameter, recently proposed by Akarsu and Dereli, in the context of f(R)f(R), f(T)f(T) and f(G)f(\mathcal{G}) theories of modified gravity. This law covers the law of Berman for obtaining exact cosmological models to account for the current acceleration of the universe, and also gives the opportunity to generalize many of the dark energy models having better consistency with the cosmological observations. Our aim is to reconstruct the f(R)f(R), f(T)f(T) and f(G)f(\mathcal{G}) models inspired by this law of variable deceleration parameter. Such models may then exhibit better consistency with the cosmological observations.Comment: 18 pages, Published online in Astrophys. Space. Sc

    Equilibrium configurations from gravitational collapse

    Get PDF
    We develop here a new procedure within Einstein's theory of gravity to generate equilibrium configurations that result as the final state of gravitational collapse from regular initial conditions. As a simplification, we assume that the collapsing fluid is supported only by tangential pressure. We show that the equilibrium geometries generated by this method form a subset of static solutions to the Einstein equations, and that they can either be regular or develop a naked singularity at the center. When a singularity is present, there are key differences in the properties of stable circular orbits relative to those around a Schwarzschild black hole with the same mass. Therefore, if an accretion disk is present around such a naked singularity it could be observationally distinguished from a disk around a black hole.Comment: 13 pages, 3 figure. Replaced with published version, several changes made according to referee's advis
    corecore