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Abstract We use Big Bang Nucleosynthesis (BBN) obser-
vational data on the primordial abundance of light elements
to constrain f (T ) gravity. The three most studied viable
f (T ) models, namely the power law, the exponential and
the square-root exponential are considered, and the BBN
bounds are adopted in order to extract constraints on their
free parameters. For the power-law model, we find that the
constraints are in agreement with those obtained using late-
time cosmological data. For the exponential and the square-
root exponential models, we show that for reliable regions of
parameters space they always satisfy the BBN bounds. We
conclude that viable f (T ) models can successfully satisfy
the BBN constraints.

1 Introduction

Cosmological observations coming from Type Ia Supernovae
[1,2], cosmic microwave background radiation [3,4] and the
large scale structure [5,6] provide evidence that the Universe
is currently in an accelerating phase. This result is, in general,
ascribed to the existence of a sort of dark-energy (DE) sector
in the Universe, an exotic energy source characterized by
a negative pressure. At late times, the dark-energy sector
eventually dominates over the cold dark matter (CDM), and
it drives the Universe to the observed accelerating expansion.

a e-mail: capozziello@na.infn.it
b e-mail: lambiase@sa.infn.it
c e-mail: msaridak@phys.uoa.gr

A possibility that can be explored to explain the acceler-
ated phase of the Universe is to consider a theory of grav-
ity based on the Weitzenböck connection, instead of the
Levi-Civita one, which deduces that the gravitational field
is described by the torsion instead of the curvature tensor.
In such theories, the torsion tensor is achieved from prod-
ucts of first derivatives of tetrad fields, and hence no sec-
ond derivatives appear. This teleparallel approach [7,8], is
closely related to general relativity, except for “boundary
terms” [9,10] that involve total derivatives in the action, and
thus one can construct the Teleparallel Equivalent of General
Relativity (TEGR), which is completely equivalent with gen-
eral relativity at the level of equations but is based on torsion
instead of curvature. Hence, one can start from TEGR and
construct various gravitational modifications based on tor-
sion, with f (T ) gravity being the most studied one [11–13].
In particular, it may represent an alternative to inflationary
models without the use of the inflaton, as well as to effective
DE models, in which the Universe acceleration is driven by
the extra torsion terms [11–39] (for a detailed review, see
[40]). The main advantage of f (T ) gravity is that the field
equations are of second order, a property that makes these
theories simpler if compared to the dynamical equations of
other extended theories of gravity, such as f (R) gravity in
metric formalism. Moreover, we point out the possibility to
recover specific form of f (T ) model by making use of a
tomographic approach capable of addressing the form of the
f (T ) function at any epoch. As discussed, in [41,42], a tomo-
graphic description for cosmological models is, in principle,
always possible ranging from the primordial quantum states
up to the today accelerated epoch. The consistency of the
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approach strictly relies on the available observational data
sets that should be matched with theoretical models at vari-
ous epochs, i.e. at various redshift [43]. A fundamental role
in this perspective is played by the BBN, which constitutes a
formidable and independent constraint for any cosmological
model.

The aim of this paper is to explore the implications of f (T )

gravity to the formation of light elements in the early Uni-
verse, i.e. to the BBN, exploring the possibility to constrain
f (T ) models (here considered) by BBN observational data.
BBN has occurred between the first fractions of second after
the big bang, around ∼0.01 s, and a few hundreds of seconds
after it, when the Universe was hot and dense (indeed BBN,
together with cosmic microwave background radiation, pro-
vides the strong evidence about the high temperatures charac-
terizing the primordial Universe). It describes the sequence
of nuclear reactions that yielded the synthesis of light ele-
ments [44,45], and therefore drove the observed Universe.
In general, from BBN physics, one may infer stringent con-
straints on a given cosmological model. Hence, in this work,
we shall confront various f (T ) gravity models with BBN
calculations based on current observational data on the pri-
mordial abundance of 4He, and we shall extract constraints on
their free parameters. We shall refer to specific f (T ) models
that mimic �CDM models, but generally models of gravity
in which torsion field is present are investigated assuming
the torsion coupled to matter field [46].

The layout of the paper is as follows. In Sect. 2 we review
f (T ) gravity and the related cosmological models. In Sect. 3
we use BBN calculations in order to impose constraints on the
free parameters of specific f (T )gravity models. Conclusions
are reported in Sect. 4.

2 f (T ) gravity and cosmology

In teleparallel gravity, one adopts the curvatureless Weitzen-
böck connection (contrarily to general relativity, which is
based on the torsion-less Levi-Civita connection), which
gives rise to the non-null torsion tensor:

T λ
μν = �̂λ

νμ − �̂λ
μν = eλ

i (∂μe
i
ν − ∂νe

i
μ), (1)

where eiμ(x) are the vierbein fields defined as gμν(x) =
ηi j eiμ(x)e jν (x). Remarkably, the torsion tensor (1) encom-
passes all the information as regards the gravitational field.
The Lagrangian density is built using its contractions, and
hence the teleparallel action is given by

I = 1

16πG

∫
d4xeT, T = Sρ

μνT ρ
μν, (2)

where e = det (eiμ) = √−g, T is the torsion scalar

Sρ
μν = 1

2
(Kμν

ρ + δμ
ρ T

θν
θ − δν

ρT
θμ

θ ) (3)

Kμν
ρ = −1

2
(Tμν

ρ − T νμ
ρ − Tρ

μν), (4)

with Kμν
ρ the contorsion tensor, which gives the difference

between Weitzenböck and Levi-Civita connections. One can
now start from TEGR, and generalize action (2) in order to
construct gravitational modifications based on torsion. The
simplest scenario is to consider a Lagrangian density that is
a function of T , namely

I = 1

16πG

∫
d4xe[T + f (T )], (5)

which reduces to TEGR as soon as f (T ) = 0. In order
to explore the cosmological implications of f (T ) gravity,
we focus on homogeneous and isotropic geometry, consider-
ing the usual choice for the vierbeins eAμ = diag(1, a, a, a),
which corresponds to a flat Friedmann–Robertson–Walker
(FRW) background metric of the form ds2 = dt2 −
a2(t) δi jdxidx j , where a(t) is the scale factor. Equations
(1), (3) and (4) allow one to derive a relation between the
torsion T and the Hubble parameter H = ȧ

a , namely

T = −6H2. (6)

Hence, in the case of FRW geometry, and assuming that the
matter sector corresponds to a perfect fluid with energy den-
sity ρ and pressure p, the cosmological fields equations read
[40]

12H2[1 + f ′] + [T + f ] = 16πGρ, (7)

48H2 f ′′ Ḣ − (1 + f ′)[12H2 + 4Ḣ ] − (T − f ) = 16πGp,

where f ′ = d f/dT . The equations close by considering
the equation of continuity for the matter sector, namely ρ̇ +
3H(ρ + p) = 0. One can rewrite Eq. (7) in the usual form

H2 = 8πG

3
(ρ + ρT ), (8)

2Ḣ + 3H2 = −8πG

3
(p + pT ), (9)

where

ρT = 3

8πG

[
T f ′

3
− f

6

]
, (10)

pT = 1

16πG

f − T f ′ + 2T 2 f ′′

1 + f ′ + 2T f ′′ (11)

are the effective energy density and pressure arising from
torsional contributions. One can therefore define the effective
torsional equation-of-state parameter as ωT ≡ pT

ρT
, so that

in these classes of theories, the effective torsional terms are
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responsible for the accelerated phases of the early and/or late
Universe [40].

Let us present now three specific f (T ) forms, which are
the viable ones amongst the variety of f (T ) models with two
parameters out of which one is independent, i.e., which pass
the basic observational tests [48].

1. The power-law model by Bengochea and Ferraro (here-
after f1CDM) [12] is characterized by the form

f (T ) = β|T |n, (12)

where β and n are the two model parameters. Inserting
this f (T ) form into Friedmann equation (7) at present,
we obtain

β = (6H2
0 )1−n �m0

2n − 1
, (13)

where �m0 = 8πGρm
3H2

0
is the matter density parameter at

present, and

H0 = 73.02 ± 1.79 km/(s Mpc)

∼ 2.1 × 10−42 GeV

is the current Hubble parameter value. The best fit on the
parameter n is obtained taking the CC + H0 + SNeIa +
BAO observational data, and it reads [49]

n = 0.05536. (14)

Clearly, for n = 0 the present scenario reduces to �CDM
cosmology, namely T + f (T ) = T − 2�, with � =
−β/2.

2. The Linder model (hereafter f2CDM) [13] arises from

f (T ) = αT0
(
1 − e−p

√
T/T0

)
, p = 1

b
, (15)

with α and p (b) the two model parameters. In this case
(7) gives

α = �m0

1 − (1 + p)e−p
. (16)

The CC + H0 + SNeIa + BAO observational data imply
that the best fit of b is [49]

b = 0.04095. (17)

As we can see, for p → +∞ the present scenario reduces
to �CDM cosmology.

3. Motivated by exponential f (R) gravity [50], Bamba et al.
introduced the following f (T ) model (hereafter f3CDM)
[18]:

f (T ) = αT0(1 − e−pT/T0), p = 1

b
, (18)

with α and p (b) the two model parameters. In this case
we obtain

α = �m0

1 − (1 + 2p)e−p
. (19)

For this model, and using CC + H0 + SNeIa + BAO
observational data, the best fit is found to be [49]

b = 0.03207. (20)

Similarly to the previous case we can immediately see
that f3CDM model tends to �CDM cosmology for p →
+∞.

The above f (T ) models are considered viable in the lit-
erature because they pass the basic observational tests [40].
They are characterized by two free parameters. Notice that
one could also construct f (T ) models with more than two
parameters, for example, combining the above scenarios.
However, considering many free parameters would be a sig-
nificant disadvantage concerning the corresponding values
of the information criteria.

3 Big bang nucleosynthesis in f (T ) cosmology

In the section, we examine the BBN in the framework of
f (T ) cosmology. As is well known, BBN occurs during the
radiation dominated era. The energy density of relativistic
particles filling up the Universe is given by ρ = π2

30 g∗T 4,
where g∗ ∼ 10 is the effective number of degrees of freedom
and T the temperature. The neutron abundance is computed
via the conversion rate of protons into neutrons. The total
rate reads

�(T ) = 4A T 3(4!T 2 + 2 × 3!QT + 2!Q2), (21)

where Q = mn − mp is the mass difference of neutron and
proton, and A = 1.02 × 10−11 GeV−4. The primordial mass
fraction of 4He can be estimated by making use of the relation
[44]

Yp ≡ λ
2x(t f )

1 + x(t f )
. (22)
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Here λ = e−(tn−t f )/τ , with t f the time of the freeze-out of the
weak interactions, tn the time of the freeze-out of the nucle-
osynthesis, τ = 8803±1.1 s the neutron mean lifetime [47],
and x(t f ) = e−Q/T (t f ) is the neutron-to-proton equilibrium
ratio. The function λ(t f ) is interpreted as the fraction of neu-
trons that decay into protons during the interval t ∈ [t f , tn].
Deviations from the fractional mass Yp due to the variation
of the freezing temperature T f are given by

δYp = Yp

[(
1 − Yp

2λ

)
ln

(
2λ

Yp
− 1

)
− 2t f

τ

]
δT f

T f
, (23)

where we have set δT (tn) = 0 since Tn is fixed by the deu-
terium binding energy [51–54]. A recent determination of
mass fraction of 4He has been obtained by using infrared and
visible 4He emission lines in 45 extragalactic HII regions.
The analysis yields [55] (see also [56–59])

Yp = 0.2449 ± 0.0040. (24)

For our estimations we shall use (24) and therefore we shall
take |δYp| < 10−4. Inserting these into (23) one infers the
upper bound

∣∣∣∣δT f

T f

∣∣∣∣ < 4.7 × 10−4. (25)

The scale factor evolves as a ∼ t1/2, where t is cosmic time.
The torsional energy density ρT is treated as a perturbation to
the radiation energy density ρ. The relation between the cos-

mic time and the temperature is given by 1
t 
 ( 32π3g∗

90

)1/2 T 2

MP

(or T (t) 
 (t/s)1/2 MeV). Furthermore, we use the entropy
conservation S ∼ a3T 3 = constant. The expansion rate of
the Universe is derived from (8), and can be rewritten in the
form

H = H (R)
GR

√
1 + ρT

ρ
= HGR + δH, (26)

δH =
(√

1 + ρT

ρ
− 1

)
HGR, (27)

where HGR =
√

8πG
2 ρ (HGR is the expansion rate of the

Universe in general relativity). Thus, from the relation � =
H , one derives the freeze-out temperature T = T f

(
1+ δT f

T f

)
,

with T f ∼ 0.6 MeV (which follows from HGR 
 qT 5) and

(√
1 + ρT

ρ
− 1

)
HGR = 5qT 4

f δT f , (28)

from which, in the regime ρT � ρ, one obtains

δT f

T f

 ρT

ρ

HGR

10qT 5
f

, (29)

with q = 4!A 
 9.6 × 10−36 GeV−4. In what follows we
shall investigate the bounds that arise from the BBN con-
straints, on the free parameters of the three f (T ) models pre-
sented in the previous section. These constraint will be deter-
mined using Eqs. (29) and (10). Moreover, we shall use the
numerical values �m0 = 0.25 and T0 = 2.6 × 10−13 GeV,
where T0 is the present value of CMB temperature.

1. f1CDM model.
For the f1CDM model of (12) Eq. (10) gives

ρT = 1

16πG
[β(2n − 1)(|6H2|)n]

= 3H2
0

8πG
�m0

( T
T0

)4n

, (30)

and then (29) yields

δT f

T f
= π

15

√
πg∗

5
�m0

(T f

T0

)4(n−1) 1

qMPlT 3
f

. (31)

In Fig. 1 we depict δT f /T f from (31) vs. n, as well as
the upper bound from (25). As we can see, constraints
from BBN require n � 0.94. Remarkably, this bound
is in agreement with the best fit for n of (14), namely
n = 0.05536, which was obtained using CC + H0 +
SNeIa + BAO observational data in [49].

2. f2,3CDM model.
In the case of f2CDM model of (15) and f3CDM model
of (18), and for the purpose of this analysis, we can unified
their investigation parameterizing them as

f (T ) = αT0[1 − e−p(T/T0)m ], (32)

with

α = �m0

1 − (1 + 2mp)e−p
,

where m = 1
2 for model f2CDM and m = 1 for model

f3CDM. Inserting (32) into (29) we obtain

δT f

T f
= 2πα

15

√
πg∗

5

( T0

T f

)4 1

qMPT 3
f

×
{[

mp

( T0

T f

)4m

+ 1

2

]
e−p(T f /T0)4m − 1

2

}
.

(33)

Hence, using this relation we can calculate the value of
|δT f /T f | for various values of p = 1/b that span the
order of magnitude of the best fit values (14) and (17)
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Fig. 1 δT f /T f from (31) vs. n (thick line) for the f1CDM model of
(12), and the upper bound for δT f /T f from (25) (dashed line). As we
can see, constraints from BBN require n � 0.94

Table 1 |δT f /T f | from (33) for different values of p = 1/b, for m =
1/2 ( f2CDM model) and m = 1 ( f3CDM model)

m p = 1/b |δT f /T f |
1/2 1 5.723 × 10−38

10 1.512 × 10−38

102 1.511 × 10−38

1 1 1.4586 × 10−37

10 1.5131 × 10−38

102 1.5116 × 10−38

that were obtained using CC+H0 +SNeIa+BAO obser-
vational data in [49], and we present our results in Table
1. As we can see, in all cases the value of |δT f /T f | is
well below the BBN bound (25). Hence, BBN cannot
impose constraints on the parameter values of f2CDM
and f3CDM models.

4 Conclusions

In this work we have investigated the f (T ) model of gravity
in the framework of BBN. In particular, we have examined
the three most used and well studied viable f (T ) models,
namely the power law, the exponential and the square-root
exponential, and we have confronted them with BBN calcu-
lations based on current observational data on the primordial
abundance of 4He. Hence, we were able to extract constraints
on their free parameters.

Concerning the power-law f (T ) model, the obtained con-
straint on the exponent n, is n � 0.94. Remarkably, this
bound is in agreement with the constraints obtained using

CC + H0 + SNeIa + BAO observational data [49]. Con-
cerning the exponential and the square-root exponential, we
showed that, for realistic regions of free parameters, they
always satisfy the BBN bounds. This means that, in these
cases, BBN cannot impose strict constraints on the values of
free parameters.

In summary, we showed that viable f (T ) models, namely
those that pass the basic observational tests, can also satisfy
the BBN constraints. This feature acts as an additional advan-
tage of f (T ) gravity, which might be a successful candidate
for describing the gravitational interaction. As discussed in
[40], this kind of constraints could contribute in the debate of
fixing the most realistic picture that can be based on curvature
or torsion.
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