797 research outputs found

    Synoptic Typing of Extreme Cool-Season Precipitation Events at St. John\u27s, Newfoundland, 1979-2005

    Get PDF
    Quantitative precipitation forecasting (QPF) continues to be a significant challenge in operational forecasting, particularly in regions susceptible to extreme precipitation events. St. John’s, Newfoundland, Canada (CYYT), is affected frequently by such events, particularly in the cool season (October–April). The 50 median events in the extreme (\u3e33.78 mm during a 48-h period) precipitation event category are selected for further analysis. A manual synoptic typing is performed on these 50 events, using two separate methodologies to partition events. The first method utilizes a Lagrangian backward air parcel trajectory analysis and the second method utilizes the evolution of dynamically relevant variables, including 1000–700-hPa horizontal temperature advection, 1000–700-hPa (vector) geostrophic frontogenesis, and 700–400-hPa absolute vorticity advection. Utilizing the first partitioning method, it is found that south cases are characterized by a strong anticyclone downstream of St. John’s, southwest events are synoptically similar to the overall extreme composite and are marked by a strong cyclone that develops in the Gulf of Mexico, while west events are characterized by a weak Alberta clipper system that intensifies rapidly upon reaching the Atlantic Ocean. The second partitioning method suggests that while cyclone events are dominated by the presence of a rapidly developing cyclone moving northeastward toward St. John’s, frontal events are characterized by the presence of a strong downstream anticyclone and deformation zone at St. John’s. It is the hope of the authors that the unique methodology and results of the synoptic typing in this paper will aid forecasters in identifying certain characteristics of future precipitation events at St. John’s and similar stations

    A Meteorological Analysis of the 2013 Alberta Flood: Antecendent Large-Scale Flow Pattern and Synoptic-Dynamic Characteristics

    Get PDF
    The 19–21 June 2013 Alberta flood was the costliest (CAD $6 billion) natural disaster in Canadian history. The flood was caused by a combination of above-normal spring snowmelt in the Canadian Rockies, large antecedent precipitation, and an extreme rainfall event on 19–21 June that produced rainfall totals of 76 mm in Calgary and 91 mm in the foothills. As is typical of flash floods along the Front Range of the Rocky Mountains, rapidly rising streamflow proceeded to move downhill (eastward) into Calgary. A meteorological analysis traces an antecedent Rossby wave train across the North Pacific Ocean, starting with intense baroclinic development over East Asia on 11 June. Subsequently, downstream Rossby wave development occurred across the North Pacific; a 1032-hPa subtropical anticyclone located northeast of Hawaii initiated a southerly atmospheric river into Alaska, which contributed to the development of a cutoff anticyclone over Alaska and a Rex block (ridge to the north, cyclone to the south) in the northeastern North Pacific. Upon breakdown of the Rex block, lee cyclogenesis occurred in Montana and strong easterly upslope flow was initiated in southern Alberta. The extreme rainfall event was produced in association with a combination of quasigeostrophically and orographically forced ascent, which acted to release conditional and convective instability. As in past Front Range flash floods, moisture flux convergence and positive ᶿe advection were collocated with the heavy rainfall. Backward trajectories show that air parcels originated in the northern U.S. plains, suggesting that evapotranspiration from the local land surface may have acted as a moisture source

    Synoptic-Scale Characteristics and Precursors of Cool-Season Precipitation Events at St. John\u27s, Newfoundland, 1979-2005

    Get PDF
    The issue of quantitative precipitation forecasting continues to be a significant challenge in operational forecasting, particularly in regions susceptible to frequent and extreme precipitation events. St. John’s, Newfoundland, Canada, is one location affected frequently by such events, particularly in the cool season (October–April). These events can include flooding rains, paralyzing snowfall, and damaging winds. A precipitation climatology is developed at St. John’s for 1979–2005, based on discrete precipitation events occurring over a time period of up to 48 h. Threshold amounts for three categories of precipitation events (extreme, moderate, and light) are statistically derived and utilized to categorize such events. Anomaly plots of sea level pressure (SLP), 500-hPa height, and precipitable water are produced for up to 3 days prior to the event. Results show that extreme events originate along the Gulf Coast of the United States, with the location of anomaly origin being farther to the north and west for consecutively weaker events, culminating in light events that originate from the upper Midwest of the United States and south-central Canada. In addition, upper-level precursor features are identified up to 3 days prior to the events and are mainly located over the west coast of North America. Finally, results of a wind climatology produced for St. John’s depict a gradual shift in the predominant wind direction (from easterly to southwesterly) of both the 925-hPa geostrophic wind and 10-m observed wind from extreme to light events, inclusively. In addition, extreme events are characterized by almost exclusively easterly winds

    Dynamical and Precipitation Structures of Poleward-Moving Tropical Cyclones in Eastern Canada, 1979-2005

    Get PDF
    Tropical cyclones in the western North Atlantic basin are a persistent threat to human interests along the east coast of North America. Occurring mainly during the late summer and early autumn, these storms often cause strong winds and extreme rainfall and can have a large impact on the weather of eastern Canada. From 1979 to 2005, 40 named (by the National Hurricane Center) tropical cyclones tracked over eastern Canada. Based on the time tendency of the low-level (850–700 hPa) vorticity, the storms are partitioned into two groups: ‘‘intensifying’’ and ‘‘decaying.’’ The 16 intensifying and 12 decaying cases are then analyzed using data from both the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and the NCEP global reanalysis. Composite dynamical structures are presented for both partitioned groups, utilizing both quasigeostrophic (QG) and potential vorticity (PV) perspectives. It is found that the proximity to the tropical cyclone and subsequent negative tilt (or lack thereof) of a precursor trough over the Great Lakes region is crucial to whether a storm ‘‘intensifies’’ or ‘‘decays.’’ Heavy precipitation is often the main concern when tropical cyclones move northward into the midlatitudes. Therefore, analyses of storm-relative precipitation distributions show that storms intensifying (decaying) as they move into the midlatitudes often exhibit a counterclockwise (clockwise) rotation of precipitation around the storm center

    Precipitation Modulation by the Saint Lawrence River Valley in Association with Transitioning Tropical Cyclones

    Get PDF
    The St. Lawrence River valley (SLRV) is an important orographic feature in eastern Canada that can affect surface wind patterns and contribute to locally higher amounts of precipitation. The impact of the SLRV on precipitation distributions associated with transitioning, or transitioned, tropical cyclones that approached the region is assessed. Such cases can result in heavy precipitation during the warm season, as during the transition of Hurricane Ike (2008). Thirty-eight tropical cyclones tracked within 500 km of the SLRV from 1979 to 2011. Utilizing the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), 19 of the 38 cases (group A) had large values of ageostrophic frontogenesis within and parallel to the SLRV, in a region of northeasterly surface winds associated with pressure-driven wind channeling. Using composite and case analyses, results show that the heaviest precipitation is often located within the SLRV, regardless of the location of large-scale forcing for ascent, and is concomitant with ageostrophic frontogenesis. The suggested physical pathway for precipitation modulation in the SLRV is as follows. Valley-induced near-surface ageostrophic frontogenesis is due to pressure-driven wind channeling as a result of the along-valley pressure gradient [typically exceeding 0.4 hPa (100 km)−1] established by the approaching cyclone. Near-surface cold-air advection as a result of the northeasterly pressure-driven channeling results in a temperature inversion, similar to what is observed in cool-season wind-channeling cases. The ageostrophic frontogenesis, acting as a mesoscale ascent-focusing mechanism, helps air parcels to rise above the temperature inversion into a conditionally unstable atmosphere, which results in enhanced precipitation focused along the SLRV

    A Diagnostic Examination of Consecutive Extreme Cool-Season Precipitation Events at St. John\u27s, Newfoundland, in December 2008

    Get PDF
    St. John’s, Newfoundland, Canada (CYYT), is frequently affected by extreme precipitation events, particularly in the cool season (October–April). Previous work classified precipitation events at CYYT into categories by precipitation amount and a manual synoptic typing was performed on the 50 median extreme precipitation events, using two separate methods. Here, consecutive extreme precipitation events in December 2008 are analyzed. These events occurred over a 6-day period and produced over 125 mm of precipitation at CYYT. The first manual typing method, using a backward-trajectory analysis, results in both events being classified as “southwest,” which were previously defined as the majority of the backward trajectories originating in the Gulf of Mexico. The second method of manual synoptic typing finds that the first event is classified as a “cyclone,” while the second is a “frontal” event. A synoptic analysis of both events is conducted, highlighting important dynamic and thermodynamic structures. The first event was characterized by strong quasigeostrophic forcing for ascent in a weakly stable atmosphere in association with a rapidly intensifying extratropical cyclone off the coast of North America and transient high values of subtropical moisture. The second event was characterized by primarily frontogenetical forcing for ascent in a weakly stable atmosphere in the presence of quasi-stationary high values of subtropical moisture, in association with a northeast–southwest-oriented baroclinic zone situated near CYYT. In sum, the synoptic structures responsible for the two events highlight rather disparate means to produce an extreme precipitation event at CYYT

    A Meteorological Analysis of Important Contributions to the 1999-2005 Canadian Prairie Drought

    Get PDF
    Drought is a complex natural hazard that is endemic to the Canadian prairies. The 1999–2005 Canadian prairie drought, which had great socioeconomic impacts, was meteorologically unique in that it did not conform to the traditional persistent positive Pacific–North American (PNA) pattern and west coast ridging paradigm normally associated with prairie drought. The purpose of this study is to diagnose the unique synoptic-scale mechanisms responsible for modulating subsidence during this drought. Using 30-day running means of the percent of normal precipitation from station data, key severe dry periods during 1999–2005 are identified. Analysis of the mean fields from reanalysis data shows that these dry events can be grouped into three upper-level flow categories: amplified warm, amplified cold, and zonal. Amplified warm cases match the traditional ridging paradigm, while amplified cold and zonal cases elucidate the fact that cold-air advection and downsloping flow, respectively, can also be important subsidence mechanisms during a Canadian prairie drought. In all, the 1999–2005 drought was more meteorologically complex on the synoptic scale than previous historic prairie droughts. Finally, a brief historical perspective shows that the drought was centered in 2001–02 and was not as severe as historical droughts, suggesting that societal vulnerability also played a substantial role in the impacts of the 1999–2005 drought

    Synoptic-Scale Analysis of Freezing Rain Events in Montreal, Quebec, Canada

    Get PDF
    Freezing rain is a major environmental hazard that is especially common along the St. Lawrence River valley (SLRV) in southern Quebec, Canada. For large cities such as Montreal, severe events can have a devastating effect on people, property, and commerce. In this study, a composite analysis of 46 long-duration events for the period 1979–2008 is presented to identify key synoptic-scale structures and precursors of Montreal freezing rain events. Based on the observed structures of the 500-hPa heights, these events are manually partitioned into three types—west, central, and east—depending on the location and tilt of the 500-hPa trough axis. West events are characterized by a strong surface anticyclone downstream of Montreal, an inverted trough extending northward to the Great Lakes, and a quasi-stationary area of geostrophic frontogenesis located over Quebec. Central events are characterized by a cyclone–anticyclone couplet pattern, with a deeper surface trough extending into southern Ontario, and a strong stationary anticyclone over Quebec. East events are characterized by the passage of a transient well-defined cyclone, and a weaker downstream anticyclone. In all cases, cold northeasterly winds are channeled down the SLRV primarily by pressure-driven channeling. Northeasterly surface winds are associated with strong low-level temperature inversions within the SLRV. Additionally, west events tend to have a longer duration of weaker precipitation, while east events tend to have a shorter duration of more intense precipitation. The results of this study may aid forecasters in identifying and understanding the synoptic-scale structures and precursors to Montreal freezing rain events

    Synoptic Typing and Precursors of Heavy Warm-Season Precipitation Events at Montreal, Québec

    Get PDF
    A precipitation climatology is compiled for warm-season events at Montreal, Québec, Canada, using 6-h precipitation data. A total of 1663 events are recorded and partitioned into three intensity categories (heavy, moderate, and light), based on percentile ranges. Heavy (top 10%) precipitation events (n = 166) are partitioned into four types, using a unique manual synoptic typing based on the divergence of Q-vector components. Type A is related to cyclones and strong synoptic-scale quasigeostrophic (QG) forcing for ascent, with high-Ξe air being advected into the Montreal region from the south. Types B and C are dominated by frontogenesis (mesoscale QG forcing for ascent). Specifically, type B events are warm frontal and feature a near-surface temperature inversion, while type C events are cold frontal and associated with the largest-amplitude synoptic-scale precursors of any type. Finally, type D events are associated with little synoptic or mesoscale QG forcing for ascent and, thus, are deemed to be convective events triggered by weak shortwave vorticity maxima moving through a long-wave ridge environment, in the presence of an anomalously warm, humid, and unstable air mass that is conducive to convection. In general, types A and B feature the strongest dynamical forcing for ascent, while types C and D feature the lowest atmospheric stability. Systematic higher precipitation amounts are not preferential to any event type, although a handful of the largest warm-season precipitation events appear to be slow-moving type C (stationary front) cases
    • 

    corecore