68 research outputs found

    Modelling line emission of deuterated H_3^+ from prestellar cores

    Full text link
    Context: The depletion of heavy elements in cold cores of interstellar molecular clouds can lead to a situation where deuterated forms of H_3^+ are the most useful spectroscopic probes of the physical conditions. Aims: The aim is to predict the observability of the rotational lines of H_2D^+ and D_2H^+ from prestellar cores. Methods: Recently derived rate coefficients for the H_3^+ + H_2 isotopic system were applied to the "complete depletion" reaction scheme to calculate abundance profiles in hydrostatic core models. The ground-state lines of H_2D^+(o) (372 GHz) and D_2H^+(p) (692 GHz) arising from these cores were simulated. The excitation of the rotational levels of these molecules was approximated by using the state-to-state coefficients for collisions with H_2. We also predicted line profiles from cores with a power-law density distribution advocated in some previous studies. Results: The new rate coefficients introduce some changes to the complete depletion model, but do not alter the general tendencies. One of the modifications with respect to the previous results is the increase of the D_3^+ abundance at the cost of other isotopologues. Furthermore, the present model predicts a lower H_2D^+ (o/p) ratio, and a slightly higher D_2H^+ (p/o) ratio in very cold, dense cores, as compared with previous modelling results. These nuclear spin ratios affect the detectability of the submm lines of H_2D^+(o) and D_2H^+(p). The previously detected H_2D^+ and D_2H^+ lines towards the core I16293E, and the H_2D^+ line observed towards Oph D can be reproduced using the present excitation model and the physical models suggested in the original papers.Comment: 10 pages, 11 Figures; ver2: updated some of the Figures, added some references, added an entry to acknowledgement

    How can a 22-pole ion trap exhibit 10 local minima in the effective potential?

    Full text link
    The column density distribution of trapped OH−^- ions in a 22-pole ion trap is measured for different trap parameters. The density is obtained from position-dependent photodetachment rate measurements. Overall, agreement is found with the effective potential of an ideal 22-pole. However, in addition we observe 10 distinct minima in the trapping potential, which indicate a breaking of the 22-fold symmetry. Numerical simulations show that a displacement of a subset of the radiofrequency electrodes can serve as an explanation for this symmetry breaking

    Discovery of H2_2CCCH+^+ in TMC-1

    Full text link
    Based on a novel laboratory method, 14 mm-wave lines of the molecular ion H2_2CCCH+^+ have been measured in high resolution, and the spectroscopic constants of this asymmetric rotor determined with high accuracy. Using the Yebes 40 m and IRAM 30 m radio telescopes, we detect four lines of H2_2CCCH+^+ towards the cold dense core TMC-1. With a dipole moment of about 0.55 Debye obtained from high-level ab initio calculations, we derive a column density of 5.4±\pm1×\times1011^{11} cm−2^{-2} and 1.6±\pm0.5×\times1011^{11} cm−2^{-2} for the ortho and para species, respectively, and an abundance ratio N(H2_2CCC)/N(H2_2CCCH+^+)= 2.8±\pm0.7. The chemistry of H2_2CCCH+^+ is modelled using the most recent chemical network for the reactions involving the formation of H2_2CCCH+^+. We find a reasonable agreement between model predictions and observations, and new insights into the chemistry of C3_3 bearing species in TMC-1 are obtained

    Radiofrequency multipole traps: Tools for spectroscopy and dynamics of cold molecular ions

    Full text link
    Multipole radiofrequency ion traps are a highly versatile tool to study molecular ions and their interactions in a well-controllable environment. In particular the cryogenic 22-pole ion trap configuration is used to study ion-molecule reactions and complex molecular spectroscopy at temperatures between few Kelvin and room temperatures. This article presents a tutorial on radiofrequency ion trapping in multipole electrode configurations. Stable trapping conditions and buffer gas cooling, as well as important heating mechanisms, are discussed. In addition, selected experimental studies on cation and anion-molecule reactions and on spectroscopy of trapped ions are reviewed. Starting from these studies an outlook on the future of multipole ion trap research is given

    Transfer of a proton between H 2

    No full text

    Laser induced reactions in a 22-pole ion trap

    No full text

    Laser induced reactions in a 22-pole ion trap

    No full text
    • …
    corecore