594 research outputs found

    The VLT-FLAMES survey of massive stars: Wind properties and evolution of hot massive stars in the LMC

    Full text link
    [Abridged] We have studied the optical spectra of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star-forming region N11. Stellar parameters are determined using an automated fitting method, combining the stellar atmosphere code FASTWIND with the genetic-algorithm optimisation routine PIKAIA. Results for stars in the LH9 and LH10 associations of N11 are consistent with a sequential star formation scenario, in which activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2, of which the hottest is found to be ~49-54 kK (cf. ~45-46 kK for O3 stars). The masses of helium-enriched dwarfs and giants are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally-enhanced mixing, leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. For bright giants and supergiants no such mass-discrepancy is found, implying that these stars follow tracks of modestly (or non-)rotating objects. Stellar mass-loss properties were found to be intermediate to those found in massive stars in the Galaxy and the SMC, and comparisons with theoretical predictions at LMC metallicity yielded good agreement over the luminosity range of our targets, i.e. 5.0 < log L/L(sun) < 6.1

    X-ray Sources and their Optical Counterparts in the Globular Cluster M4

    Full text link
    We report on the Chandra X-ray Observatory ACIS-S3 imaging observation of the Galactic globular cluster M4 (NGC 6121). We detect 12 X-ray sources inside the core and 19 more within the cluster half-mass radius. The limiting luminosity of this observation is Lx~10e29 erg/sec for sources associated with the cluster, the deepest X-ray observation of a globular cluster to date. We identify 6 X-ray sources with known objects and use ROSAT observations to show that the brightest X-ray source is variable. Archival data from the Hubble Space Telescope allow us to identify optical counterparts to 16 X-ray sources. Based on the X-ray and optical properties of the identifications and the information from the literature, we classify two (possibly three) sources as cataclysmic variables, one X-ray source as a millisecond pulsar and 12 sources as chromospherically active binaries. Comparison of M4 with 47 Tuc and NGC 6397 suggests a scaling of the number of active binaries in these clusters with the cluster (core) mass.Comment: 11 pages, 6 figures, accepted for publication in ApJ. Figure 1 and 5 are of reduced qualit

    Dynamics of Primordial Black Hole Formation

    Get PDF
    We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to primordial black holes (PBHs) during the radiation-dominated phase of the Early Universe. The collapse dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological PBH mass function, is found to be δc≈0.7\delta_{\rm c} \approx 0.7 rather than the generally employed δc≈1/3\delta_{\rm c} \approx 1/3, if δ\delta is defined as \Delta M/\mh, the relative excess mass within the initial horizon volume. In order to study the accretion onto the newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times after formation of the event horizon. In general, small black holes (compared to the horizon mass at the onset of the collapse) give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore, the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, is demonstrated to apply to primordial black hole formation.Comment: 10 pages, 8 figures, revtex style, submitted to PR
    • …
    corecore