26 research outputs found

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells. Mol Pharmacol

    No full text
    ABSTRACT YC-1 is a direct activator of soluble guanylyl cyclase (sGC) and sensitizes the enzyme for activation by nitric oxide (NO) and CO. Because the potentiating effect of YC-1 on NO-induced cGMP formation in platelets and smooth muscle cells has been shown to be substantially higher than observed with the purified enzyme, the synergism between heme ligands and YC-1 is apparently more pronounced in intact cells than in cell-free systems. Here, we investigated the mechanisms underlying the synergistic activation of sGC by YC-1 and NO in endothelial cells. Stimulation of the cells with YC-1 enhanced cGMP accumulation up to ϳ100-fold. The maximal effect of YC-1 was more pronounced than that of the NO donor DEA/NO (ϳ20-fold increase in cGMP accumulation) and markedly diminished in the presence of L-N G -nitroarginine, EGTA, or oxyhemoglobin. Because YC-1 did not activate endothelial NO synthase, the pronounced effect of YC-1 on cGMP accumulation was apparently caused by a synergistic activation of sGC by YC-1 and basal NO. The effect of YC-1 was further enhanced by addition of DEA/NO, resulting in a ϳ160-fold stimulation of cGMP accumulation. Thus, YC-1 increased the NO-induced accumulation of cGMP in intact cells by ϳ8-fold. Addition of endothelial cell homogenate increased the stimulatory effect of YC-1 on NO-activated purified sGC from 1.2-to 3.7-fold. This effect was not observed with heat-denatured homogenates, suggesting that a heat-labile factor present in endothelial cells potentiates the effect of YC-1 on NO-activated sGC

    Varied effects of tobacco smoke and e-cigarette vapor suggest that nicotine does not affect endothelium-dependent relaxation and nitric oxide signaling

    No full text
    Abstract Chronic smoking causes dysfunction of vascular endothelial cells, evident as a reduction of flow-mediated dilation in smokers, but the role of nicotine is still controversial. Given the increasing use of e-cigarettes and other nicotine products, it appears essential to clarify this issue. We studied extracts from cigarette smoke (CSE) and vapor from e-cigarettes (EVE) and heated tobacco (HTE) for their effects on vascular relaxation, endothelial nitric oxide signaling, and the activity of soluble guanylyl cyclase. The average nicotine concentrations of CSE, EVE, and HTE were 164, 800, and 85 µM, respectively. At a dilution of 1:3, CSE almost entirely inhibited the relaxation of rat aortas and porcine coronary arteries to acetylcholine and bradykinin, respectively, while undiluted EVE, with a 15-fold higher nicotine concentration, had no significant effect. With about 50% inhibition at 1:2 dilution, the effect of HTE was between CSE and EVE. Neither extract affected endothelium-independent relaxation to an NO donor. At the dilutions tested, CSE was not toxic to cultured endothelial cells but, in contrast to EVE, impaired NO signaling and inhibited NO stimulation of soluble guanylyl cyclase. Our results demonstrate that nicotine does not mediate the impaired endothelium-dependent vascular relaxation caused by smoking

    Varied effects of tobacco smoke and e-cigarette vapor suggest that nicotine does not affect endothelium-dependent relaxation and nitric oxide signaling

    No full text
    Chronic smoking causes dysfunction of vascular endothelial cells, evident as a reduction of flow-mediated dilation in smokers, but the role of nicotine is still controversial. Given the increasing use of e-cigarettes and other nicotine products, it appears essential to clarify this issue. We studied extracts from cigarette smoke (CSE) and vapor from e-cigarettes (EVE) and heated tobacco (HTE) for their effects on vascular relaxation, endothelial nitric oxide signaling, and the activity of soluble guanylyl cyclase. The average nicotine concentrations of CSE, EVE, and HTE were 164, 800, and 85 µM, respectively. At a dilution of 1:3, CSE almost entirely inhibited the relaxation of rat aortas and porcine coronary arteries to acetylcholine and bradykinin, respectively, while undiluted EVE, with a 15-fold higher nicotine concentration, had no significant effect. With about 50% inhibition at 1:2 dilution, the effect of HTE was between CSE and EVE. Neither extract affected endothelium-independent relaxation to an NO donor. At the dilutions tested, CSE was not toxic to cultured endothelial cells but, in contrast to EVE, impaired NO signaling and inhibited NO stimulation of soluble guanylyl cyclase. Our results demonstrate that nicotine does not mediate the impaired endothelium-dependent vascular relaxation caused by smoking

    Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function.

    No full text
    Electronic cigarette refill liquids are commercially provided with a wide variety of flavoring agents. A recent study suggested that several common flavors may scavenge nitric oxide (NO) and cause endothelial dysfunction. It was the aim of the present study to investigate the effects of these flavors on NO/cyclic GMP-mediated signaling and vascular relaxation. We tested the flavoring agents for effects on Ca2+-induced cGMP accumulation and NO synthase activation in cultured endothelial cells. NO scavenging was studied with NO-activated soluble guanylate cyclase and as NO release from a NO donor, measured with a NO electrode. Blood vessel function was studied with precontracted rat aortic rings in the absence and presence of acetylcholine or a NO donor. Cinnamaldehyde inhibited Ca2+-stimulated endothelial cGMP accumulation and NO synthase activation at ≥0.3 mM. Cinnamaldehyde and diacetyl inhibited NO-activated soluble guanylate cyclase with IC50 values of 0.56 (0.54-0.58) and 0.29 (0.24-0.36) mM, respectively, and caused moderate NO scavenging at 1 mM that was not mediated by superoxide anions. The other compounds did not scavenge NO at 1 mM. None of the flavorings interfered with acetylcholine-induced vascular relaxation, but they caused relaxation of pre-contracted aortas. The most potent compounds were eugenol and cinnamaldehyde with EC50 values of ~0.5 mM. Since the flavors did not affect endothelium-dependent vascular relaxation, NO scavenging by cinnamaldehyde and diacetyl does not result in impaired blood vessel function. Although not studied in vivo, the low potency of the compounds renders it unlikely that the observed effects are relevant to humans inhaling flavored vapor from electronic cigarettes
    corecore