4 research outputs found

    Swelling and Surface Interactions of End-Grafted Poly(2-vinylpyridine) Layers in Acidic Solution: Influence of Grafting Density and Salt Concentration

    No full text
    In previous studies, the authors found that end-grafted layers of the weak polybase poly­(2-vinylpyridine) (P2VP) in aqueous solutions do not only swell and collapse if the pH value and salt concentration are varied but also exhibit a pH- and salinity-dependent adhesion to microsized silica spheres. For a better understanding of these effects, in situ force measurements using the AFM colloidal probe technique were applied to end-grafted P2VP layers of different grafting densities in NaCl solutions at pH 2.5. Although a mushroom-to-brush transition could be seen in the dry state, the layers were in the brush regime in aqueous solutions at all NaCl concentrations and grafting densities. We observed an increase of the brush height with increasing grafting density and a salinity-dependent collapse and reswelling of the brushes. The adhesion between the P2VP layer and a silica sphere depended on both grafting density and salinity. At low salt concentrations, the adhesion reached its highest value at the intermediate grafting density and disappeared with denser brushes. Maximum adhesion was obtained for high NaCl concentrations and the lowest grafting density. From a detailed analysis of the experiments, we gained insight into chain stretching and density profiles under complex ionic conditions and into the mechanism of adhesion of polyelectrolytes to solid surfaces

    pH and Salt Response of Mixed Brushes Made of Oppositely Charged Polyelectrolytes Studied by in Situ AFM Force Measurements and Imaging

    No full text
    The response of mixed brushes made of poly­(acrylic acid) and poly­(2-vinyl pyridine) with a mixing ratio of about 60:40 was studied using atomic force microscopy (AFM) force measurements with colloidal probes and AFM imaging with a sharp tip in the pH range between 2.5 and 8 and at varying KCl concentrations up to 1 M. It was found that under all conditions a dense polyelectrolyte complex layer coexists with excess polyelectrolyte chains in varying swelling states depending on pH and salt concentration. The mixed brush thus combines typical features of polyelectrolyte brushes and complexes. So, the increase of the salt concentration not only led to a transition from osmotic to salted brush regime but also to salt-induced softening or partial decomposition of the complex layer. Attractive forces at high salt concentrations indicated the presence of P2VP chains in the swollen layer even at high pH values

    Core–Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction

    No full text
    Hydrogels based on poly­(<i>N</i>-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young’s moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet-based microfluidics. When the microgel core deswells upon increase of the temperature to above 34 °C, the shell is stretched and dragged to follow this deswelling into the microgel interior, resulting in an increase of the microgel surficial Young’s modulus. However, as the surface interactions of the pAAm shell are independent of temperature at around 34 °C, they do not considerably change during the pNIPAAm-core volume phase transition. This feature makes these core–shell microgels a promising platform to be used as building blocks to assemble soft materials with rationally and independently tunable mechanics

    Tunable Hydrophilic or Amphiphilic Coatings: A “Reactive Layer Stack” Approach

    No full text
    Thin films with tunable properties are very interesting for potential applications as functional coatings with, for example, anti-icing or improved easy-to-clean properties. A novel “reactive layer stack” approach was developed to create covalently grafted mono- and multilayers of poly­(glycidyl methacrylate)/poly­(<i>tert</i>-butyl acrylate) diblock copolymers. Because these copolymers contain poly­(glycidyl methacrylate) blocks they behave as self-cross-linking materials after creation of acrylic acid functionalities by splitting off the <i>tert</i>-butyl units. The ellipsometrically determined coating thickness of the resulting hydrophilic multilayers depended linearly on the number of applied layers. Amphiphilic films with tunable wettability were prepared using triblock terpolymers with an additional poly­(methyl methacrylate) block. The mechanism of the formation of the (multi)­layers was investigated in detail by studying the acidolysis of the surface-linked <i>tert</i>-butyl acrylate blocks by infrared reflection absorbance spectroscopy, accompanied by surface analysis using atomic force microscopy and contact angle measurements. In the case of the amphiphilic and switchable terpolymer layers this reaction was very sensitive to the used acidic reagent
    corecore