92 research outputs found

    Demonstration of whispering-gallery-mode resonant enhancement of optical forces

    Full text link
    We experimentally studied whispering-gallery modes(WGMs) and demonstrated resonance enhancement of optical forces evanescently exerted on dielectric microspheres. We showed that the resonant light pressure can be used for optical sorting of microparticles with extraordinary uniform resonant properties that is unachievable by conventional sorting techniques.Comment: IEEE 2014 National Aerospace and Electronics Conference (NAECON), Dayton, Ohio, June 201

    Self-consistent model for ambipolar tunneling in quantum-well systems

    Full text link
    We present a self-consistent approach to describe ambipolar tunneling in asymmetrical double quantum wells under steady-state excitation and extend the results to the case of tunneling from a near-surface quantum well to surface states. The results of the model compare very well with the behavior observed in photoluminescence experiments in InGaAs/InPInGaAs/InP asymmetric double quantum wells and in near-surface AlGaAs/GaAsAlGaAs/GaAs single quantum wells.Comment: 10 pages, REVTeX 3.

    Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers

    Get PDF
    In recent years, optical super-resolution by microspheres and microfibers emerged as a new paradigm in nanoscale label-free and fluorescence imaging. However, the mechanisms of such imaging are still not completely understood and the resolution values are debated. In this work, the fundamental limits of super-resolution imaging by high-index barium-titanate microspheres and silica microfibers are studied using nanoplasmonic arrays made from Au and Al. A rigorous resolution analysis is developed based on the object's convolution with the point-spread function that has width well below the conventional (∼λ/2) diffraction limit, where λ is the illumination wavelength. A resolution of ∼λ/6-λ/7 is demonstrated for imaging nanoplasmonic arrays by microspheres. Similar resolution was demonstrated for microfibers in the direction perpendicular to the fiber axis with hundreds of times larger field-of-view in comparison to microspheres. Using numerical solution of Maxwell's equations, it is shown that extraordinary close point objects can be resolved in the far field, if they oscillate out of phase. Possible super-resolution using resonant excitation of whispering gallery modes is also studied. Keywords: Optical super-resolution; near-field microscopy; confocal microscop

    A simple formula for the L-gap width of a face-centered-cubic photonic crystal

    Get PDF
    The width △L\triangle_L of the first Bragg's scattering peak in the (111) direction of a face-centered-cubic lattice of air spheres can be well approximated by a simple formula which only involves the volume averaged ϵ\epsilon and ϵ2\epsilon^2 over the lattice unit cell, ϵ\epsilon being the (position dependent) dielectric constant of the medium, and the effective dielectric constant ϵeff\epsilon_{eff} in the long-wavelength limit approximated by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic behaviour of the absolute gap width △L\triangle_L for high dielectric contrast δ\delta exactly. The standard deviation σ\sigma steadily decreases well below 1% as δ\delta increases. For example σ<0.1\sigma< 0.1% for the sphere filling fraction f=0.2f=0.2 and δ≥20\delta\geq 20. On the interval δ∈(1,100)\delta\in(1,100), our formula still approximates the absolute gap width △L\triangle_L (the relative gap width △Lr\triangle_L^r) with a reasonable precision, namely with a standard deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the close-packed case. Differences between the case of air spheres in a dielectric and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm
    • …
    corecore