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ABSTRACT 

In recent years, optical super-resolution by microspheres and microfibers emerged as a new paradigm in nanoscale 
label-free and fluorescence imaging. However, the mechanisms of such imaging are still not completely understood and 
the resolution values are debated. In this work, the fundamental limits of super-resolution imaging by high-index 
barium-titanate microspheres and silica microfibers are studied using nanoplasmonic arrays made from Au and Al. A 
rigorous resolution analysis is developed based on the object’s convolution with the point-spread function that has width 
well below the conventional (~/2) diffraction limit, where  is the illumination wavelength. A resolution of ~/6-/7 is 
demonstrated for imaging nanoplasmonic arrays by microspheres. Similar resolution was demonstrated for microfibers in 
the direction perpendicular to the fiber axis with hundreds of times larger field-of-view in comparison to microspheres. 
Using numerical solution of Maxwell’s equations, it is shown that extraordinary close point objects can be resolved in 
the far field, if they oscillate out of phase. Possible super-resolution using resonant excitation of whispering gallery 
modes is also studied. 

Keywords: Optical super-resolution; near-field microscopy; confocal microscopy 
 

1. INTRODUCTION 

Optical microscopy is one of the most important and widely spread experimental techniques which can be found in 
practically any biomedical or microphotonics laboratory. However, the resolution of standard microscopes cannot exceed 
the diffraction limit which forms an unavoidable barrier for any far-field imaging system. More specific Abbe, Rayleigh, 
Sparrow, and Houston resolution criteria show that the limit of lateral resolution is close to a half of the wavelength (λ). 
Increasing the resolution beyond the diffraction limit requires new physical principles such as detection of the optical 
near-fields or use of strong non-linear effects.1 In recent years, fluorescence (FL) microscopy achieved the resolution 
beyond the diffraction limit due to nanoscale dimensions of light sources (dye molecules) combined with the nonlinear 
optical effects.1 However it also has many drawbacks such as photobleaching and, most importantly, staining the biological 
samples with dyes is not always a desirable option.2 
 
The label-free microscopy (LFM) relies on such effects as transient absorption3, super-oscillation4, and hyperlens 
imaging5. However, LFM is developing more slowly than FL microscopy for two reasons. First, the LFM mechanisms 
rely on subtler light-scattering processes in nanoscale objects that result in lower effective image contrasts. Second, the 
experimental quantification of resolution is complicated in LFM due to the lack of good “point”-sources. 
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