775 research outputs found

    Electric and hydrogen buses : Shifting from conventionally fuelled cars in the UK

    Get PDF
    This research was carried out under the UK Energy Research Centre (UKERC) as part of the ADdressing Valuation of Energy and Nature Together (ADVENT) funded project. Funding was received from the Natural Environment Research Council (NE/M019691/1), United Kingdom and the School of Biological Sciences, University of Aberdeen, United Kingdom. The authors would also like to thank Dr Christian Brand, University of Oxford, for giving them access to the Transport Energy and Air Pollution Model UK (TEAM - UK).Peer reviewedPublisher PD

    Electric and hydrogen rail : Potential contribution to net zero in the UK

    Get PDF
    Acknowledgements  This research was carried out under the UK Energy Research Centre (UKERC) as part of the ADdressing Valuation of Energy and Nature Together (ADVENT) funded project. Funding was received from the Natural Environment Research Council (NE/M019691/1), United Kingdom and the School of Biological Sciences, University of Aberdeen, United Kingdom. The authors would also like to thank Dr Christian Brand, University of Oxford, for giving them access to the Transport Energy and Air Pollution Model (TEAM-UK).Peer reviewedPublisher PD

    A method for exploratory repeated-measures analysis applied to a breast-cancer screening study

    Get PDF
    When a model may be fitted separately to each individual statistical unit, inspection of the point estimates may help the statistician to understand between-individual variability and to identify possible relationships. However, some information will be lost in such an approach because estimation uncertainty is disregarded. We present a comparative method for exploratory repeated-measures analysis to complement the point estimates that was motivated by and is demonstrated by analysis of data from the CADET II breast-cancer screening study. The approach helped to flag up some unusual reader behavior, to assess differences in performance, and to identify potential random-effects models for further analysis.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS481 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Japan and the UK : Emission predictions of electric and hydrogen rail to 2050

    Get PDF
    Acknowledgements This research was carried out under the UK Energy Research Centre (UKERC) as part of the ADdressing Valuation of Energy and Nature Together (ADVENT) funded project. Funding was received from the Natural Environment Research Council (NE/M019691/1), United Kingdom and the School of Biological Sciences, University of Aberdeen, United Kingdom. Funding was also received from the Postgraduate Research Grant from University of Aberdeen, United Kingdom. This work has also emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under the SFI Strategic Partnership Programme Grant number SFI/15/SPP/E3125. The authors would also like to thank Dr Christian Brand, University of Oxford, for giving them access and guidance regarding the Trans- port Energy and Air Pollution Model (TEAM‐UK).Peer reviewedPublisher PD

    The application of travel demand management initiatives within a university setting

    Get PDF
    This research was undertaken as part of the UK Energy Research Centre (UKERC) research programme under the ADdressing Valuation of Energy and Nature Together (ADVENT) project, funded by the Natural Environment Research Council (NE/M019691/1) United Kingdom. Funding was also received from the School of Biological Sciences at the University of Aberdeen, United Kingdom. The authors would like to thank Dr Kate Pangbourne, The University of Leeds, for their detailed and constructive feedback on this paper. The authors would also like to acknowledge Dr Alex Douglas for their input in the methodology.Peer reviewedPostprin

    Hiring labourers for the vineyard and making sense of God’s grace at work : an empirical investigation in hermeneutical theory and ordinary theology

    Get PDF
    The Matthean parable of the labourers in the vineyard is open to multiple interpretations. For some, the parable may speak of God’s unlimited grace and generosity; for others the parable may speak of God’s unfairness. The present study is set within the context of an emerging interest in the concept of grace as a topic for empirical enquiry. The study draws on the theoretical framework provided by the notion of ordinary theology and employs the sensing, intuition, feeling and thinking (SIFT) approach to biblical hermeneutics, which is rooted in Jungian psychological type theory. Data were drawn from two one-day workshops with Church of England Readers (lay ministers). On each occasion the participants were divided into three separate groups according to their preferences for thinking or feeling (the two judging functions proposed by psychological type theory) and within these groups they were invited to explore the messages about grace in Matthew 20:1–15 (Jesus’ parable of the labourers in the vineyard). The rich data gathered from these workshops generated insights into contemporary theologies of grace and also confirmed the hypothesis that a biblical interpretation of grace is shaped by the reader’s psychological type preference for thinking or feeling. While feeling types tended to empathise, thinking types pondered motives and unfairness

    Hiring labourers for the vineyard and making sense of God’s grace at work : an empirical investigation in hermeneutical theory and ordinary theology

    Get PDF
    The Matthean parable of the labourers in the vineyard is open to multiple interpretations. For some, the parable may speak of God’s unlimited grace and generosity; for others the parable may speak of God’s unfairness. The present study is set within the context of an emerging interest in the concept of grace as a topic for empirical enquiry. The study draws on the theoretical framework provided by the notion of ordinary theology and employs the sensing, intuition, feeling and thinking (SIFT) approach to biblical hermeneutics, which is rooted in Jungian psychological type theory. Data were drawn from two one-day workshops with Church of England Readers (lay ministers). On each occasion the participants were divided into three separate groups according to their preferences for thinking or feeling (the two judging functions proposed by psychological type theory) and within these groups they were invited to explore the messages about grace in Matthew 20:1–15 (Jesus’ parable of the labourers in the vineyard). The rich data gathered from these workshops generated insights into contemporary theologies of grace and also confirmed the hypothesis that a biblical interpretation of grace is shaped by the reader’s psychological type preference for thinking or feeling. While feeling types tended to empathise, thinking types pondered motives and unfairness

    Changes in cocoa properties induced by the alkalization process: A review

    Full text link
    [EN] Alkalization, also known as "Dutching," is an optional, but very useful, step taken in the production chain of cocoa to darken its color, modify its taste, and increase natural cocoa solubility. Over the years, various attempts have been made to design new and more effective alkalization methods. Moreover, different authors have attempted to elucidate the impact of alkalization on the physicochemical, nutritional, functional, microbiological, and sensory characteristics of alkalized cocoa. The aim of this review is to provide a clear guide about not only the conditions that can be applied to alkalize cocoa, but also the reported effects of alkalization on the nutritional, functional, microbiological, and sensory characteristics of cocoa. The first part of this review describes different cocoa alkalization systems and how they can be tuned to induce specific changes in cocoa properties. The second part is a holistic analysis of the effects of the alkalization process on different cocoa features, performed by emphasizing the biochemistry behind all these transformations.European Regional Development Fund, Grant/Award Number: Project RTC-2016-5241-2; Ministerio deEconomia y Competitividad, Grant/Award Number: Project RTC-2016-5241-2Valverde-Garcia, D.; Pérez-Esteve, É.; Barat Baviera, JM. (2020). Changes in cocoa properties induced by the alkalization process: A review. Comprehensive Reviews in Food Science and Food Safety. 19(4):2200-2221. https://doi.org/10.1111/1541-4337.12581S22002221194Ilesanmi Adeyeye, E. (2016). Proximate, Mineral And Antinutrient Compositions Of Natural Cocoa Cake, Cocoa Liquor And Alkalized Cocoa Powders. Journal of Advanced Pharmaceutical Science And Technology, 1(3), 12-28. doi:10.14302/issn.2328-0182.japst-15-855Ajandouz, E. H., Tchiakpe, L. S., Ore, F. D., Benajiba, A., & Puigserver, A. (2001). Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. Journal of Food Science, 66(7), 926-931. doi:10.1111/j.1365-2621.2001.tb08213.xAndres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventós, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Andruszkiewicz, P. J., D’Souza, R. N., Altun, I., Corno, M., & Kuhnert, N. (2019). Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 121, 217-228. doi:10.1016/j.foodres.2019.03.015Aprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180Aremu, C. Y., Agiang, M. A., & Ayatse, J. O. I. (1995). Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods for Human Nutrition, 48(3), 217-223. doi:10.1007/bf01088443Bandi J. P. Kubicek K. &Raboud P. B.(1984).Installation for solubilizing cocoa. US4438681A.Baigrie, B. D. (1994). Cocoa flavour. Understanding Natural Flavors, 268-282. doi:10.1007/978-1-4615-2143-3_17Bartella, L., Di Donna, L., Napoli, A., Siciliano, C., Sindona, G., & Mazzotti, F. (2019). A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chemistry, 278, 261-266. doi:10.1016/j.foodchem.2018.11.072Bauermeister J.(1989).Process for making cacao powder by disagglomeration and cacao powder granulate by subsequent agglomeration. EP0310790A2.Beg, M. S., Ahmad, S., Jan, K., & Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66, 108-116. doi:10.1016/j.tifs.2017.06.007Biehl B.(1986).Cocoa fermentation and problem of acidity over‐fermentation and low cocoa flavour.Selangor Malaysia: Incorporated Society of Planters.Serra Bonvehí, J., & Ventura Coll, F. (2000). Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. European Food Research and Technology, 210(3), 189-195. doi:10.1007/pl00005510Borthwick, A. D., & Da Costa, N. C. (2015). 2,5-diketopiperazines in food and beverages: Taste and bioactivity. Critical Reviews in Food Science and Nutrition, 57(4), 718-742. doi:10.1080/10408398.2014.911142Chalin M. L.(1972).Method of dutching cocoa. US3868469A.Rainer Cremer, D. (2000). The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders. Food Chemistry, 71(1), 37-43. doi:10.1016/s0308-8146(00)00122-9De Vuyst, L., & Weckx, S. (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology, 121(1), 5-17. doi:10.1111/jam.13045Del Rio, D., Costa, L. G., Lean, M. E. J., & Crozier, A. (2010). Polyphenols and health: What compounds are involved? Nutrition, Metabolism and Cardiovascular Diseases, 20(1), 1-6. doi:10.1016/j.numecd.2009.05.015Domínguez-Rodríguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1-15. doi:10.1016/j.chroma.2017.07.066El Gharras, H. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science & Technology, 44(12), 2512-2518. doi:10.1111/j.1365-2621.2009.02077.xEllis L. D.(1990).Process for making dark cocoa. US5114730A.Ellis L. D. (1992).Process for making dark cocoa. US5114730A.Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., … Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80-88. doi:10.1016/j.cogsc.2018.07.007Franco, R., Oñatibia-Astibia, A., & Martínez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 1. Journal of Agricultural and Food Chemistry, 67(16), 4632-4642. doi:10.1021/acs.jafc.9b01049Germann, D., Stark, T. D., & Hofmann, T. (2019). Formation and Characterization of Polyphenol-Derived Red Chromophores. Enhancing the Color of Processed Cocoa Powders: Part 2. Journal of Agricultural and Food Chemistry, 67(16), 4643-4651. doi:10.1021/acs.jafc.9b01050Gobert, J., & Glomb, M. A. (2009). Degradation of Glucose: Reinvestigation of Reactive α-Dicarbonyl Compounds†. Journal of Agricultural and Food Chemistry, 57(18), 8591-8597. doi:10.1021/jf9019085Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057-4061. doi:10.1021/jf060360rGültekin-Özgüven, M., Berktaş, I., & Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559-565. doi:10.1016/j.lwt.2016.04.065Hagerman, A. E. (1992). Tannin—Protein Interactions. Phenolic Compounds in Food and Their Effects on Health I, 236-247. doi:10.1021/bk-1992-0506.ch019Holkar, C. R., Jadhav, A. J., & Pinjari, D. V. (2019). A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends in Food Science & Technology, 86, 199-208. doi:10.1016/j.tifs.2019.02.035Huang, Y., & Barringer, S. A. (2010). Alkylpyrazines and Other Volatiles in Cocoa Liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Food Science, 75(1), C121-C127. doi:10.1111/j.1750-3841.2009.01455.xHurst, W. J., Krake, S. H., Bergmeier, S. C., Payne, M. J., Miller, K. B., & Stuart, D. A. (2011). Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-53International Cocoa Organization(2017).Annual report 2014/2015 Retrieved fromhttps://www.icco.org/about-us/international-cocoa-agreements/cat_view/1-annual-report.html.Mazor Jolić, S., Radojčić Redovniković, I., Marković, K., Ivanec Šipušić, Đ., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793-1800. doi:10.1111/j.1365-2621.2011.02670.xKofink, M., Papagiannopoulos, M., & Galensa, R. (2007). (-)-Catechin in Cocoa and Chocolate: Occurence and Analysis of an Atypical Flavan-3-ol Enantiomer. Molecules, 12(7), 1274-1288. doi:10.3390/12071274Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012Kopp G. M. Hennen J. C. Seyller M. &Brandstetter B.(2010).Process for producing high flavour cocoa. EP2241190A1.Kruszewski, B., & Obiedziński, M. W. (2020). Impact of Raw Materials and Production Processes on Furan and Acrylamide Contents in Dark Chocolate. Journal of Agricultural and Food Chemistry, 68(8), 2562-2569. doi:10.1021/acs.jafc.0c00412Lan, X., Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., … Xiao, Z. (2010). Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry, 120(4), 967-972. doi:10.1016/j.foodchem.2009.11.033Li, Y., Feng, Y., Zhu, S., Luo, C., Ma, J., & Zhong, F. (2012). The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis, 25(1), 17-23. doi:10.1016/j.jfca.2011.04.010Li, Y., Zhu, S., Feng, Y., Xu, F., Ma, J., & Zhong, F. (2013). Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Science and Biotechnology, 23(1), 59-63. doi:10.1007/s10068-014-0008-5Lima, L. J. R., Kamphuis, H. J., Nout, M. J. R., & Zwietering, M. H. (2011). Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiology, 28(3), 573-582. doi:10.1016/j.fm.2010.11.011MALEYKI, M. J. A., & ISMAIL, A. (2010). ANTIOXIDANT PROPERTIES OF COCOA POWDER. Journal of Food Biochemistry, 34(1), 111-128. doi:10.1111/j.1745-4514.2009.00268.xMartín, M. Á., & Ramos, S. (2017). Health beneficial effects of cocoa phenolic compounds: a mini-review. Current Opinion in Food Science, 14, 20-25. doi:10.1016/j.cofs.2016.12.002Martin, M. A., Goya, L., & Ramos, S. (2013). Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food and Chemical Toxicology, 56, 336-351. doi:10.1016/j.fct.2013.02.020Méndez-Albores, A., De Jesús-Flores, F., Castañeda-Roldan, E., Arámbula-Villa, G., & Moreno-Martı́nez, E. (2004). The effect of toasting and boiling on the fate of B-aflatoxins during pinole preparation. Journal of Food Engineering, 65(4), 585-589. doi:10.1016/j.jfoodeng.2004.02.024Miller, K. B., Hurst, W. J., Payne, M. J., Stuart, D. A., Apgar, J., Sweigart, D. S., & Ou, B. (2008). Impact of Alkalization on the Antioxidant and Flavanol Content of Commercial Cocoa Powders. Journal of Agricultural and Food Chemistry, 56(18), 8527-8533. doi:10.1021/jf801670pOlam. (2017).The De Zaan cocoa manual. The Netherlands: Archer Daniels Midland Company BV.ODUNS, A. A., & LONGE, O. G. (1998). Nutritive value of hot water- or cocoa-pod ash solution-treated cocoa bean cake for broiler chicks. British Poultry Science, 39(4), 519-525. doi:10.1080/00071669888700Ofosu, I. W., Ankar-Brewoo, G. M., Lutterodt, H. E., Benefo, E. O., & Menyah, C. A. (2019). Estimated daily intake and risk of prevailing acrylamide content of alkalized roasted cocoa beans. Scientific African, 6, e00176. doi:10.1016/j.sciaf.2019.e00176Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103-112. doi:10.1016/j.tifs.2017.03.007Ortega, N., Romero, M.-P., Macià, A., Reguant, J., Anglès, N., Morelló, J.-R., & Motilva, M.-J. (2008). Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. Journal of Agricultural and Food Chemistry, 56(20), 9621-9627. doi:10.1021/jf8014415Pia, A. K. R., Pereira, A. P. M., Costa, R. A., Alvarenga, V. O., Freire, L., Carlin, F., & Sant’Ana, A. S. (2019). The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiology, 82, 99-106. doi:10.1016/j.fm.2019.01.009Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT, 117, 108598. doi:10.1016/j.lwt.2019.108598Quelal‐Vásconez, M. A., Lerma‐García, M. J., Pérez‐Esteve, É., Talens, P., & Barat, J. M. (2020). Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 448-478. doi:10.1111/1541-4337.12522Razzaque, M. A., Saud, Z. A., Absar, N., Karim, M. R., & Hashinaga, F. (2000). Purification and Characterization of Polyphenoloxidase from Guava Infected with Fruit-rot Disease. Pakistan Journal of Biological Sciences, 3(3), 407-410. doi:10.3923/pjbs.2000.407.410Rimbach, G., Melchin, M., Moehring, J., & Wagner, A. (2009). Polyphenols from Cocoa and Vascular Health—A Critical Review. International Journal of Molecular Sciences, 10(10), 4290-4309. doi:10.3390/ijms10104290Rodríguez, P., Pérez, E., & Guzmán, R. (2009). Effect of the types and concentrations of alkali on the color of cocoa liquor. Journal of the Science of Food and Agriculture, 89(7), 1186-1194. doi:10.1002/jsfa.3573Saltini, R., Akkerman, R., & Frosch, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control, 29(1), 167-187. doi:10.1016/j.foodcont.2012.05.054Sarmadi, B., Aminuddin, F., Hamid, M., Saari, N., Abdul-Hamid, A., & Ismail, A. (2012). Hypoglycemic effects of cocoa (Theobroma cacao L.) autolysates. Food Chemistry, 134(2), 905-911. doi:10.1016/j.foodchem.2012.02.202Sarmadi, B., Ismail, A., & Hamid, M. (2011). Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Research International, 44(1), 290-296. doi:10.1016/j.foodres.2010.10.017Scalone, G. L. L., Textoris-Taube, K., De Meulenaer, B., De Kimpe, N., Wöstemeyer, J., & Voigt, J. (2019). Cocoa-specific flavor components and their peptide precursors. Food Research International, 123, 503-515. doi:10.1016/j.foodres.2019.05.019Schroder, T., Vanhanen, L., & Savage, G. P. (2011). Oxalate content in commercially produced cocoa and dark chocolate. Journal of Food Composition and Analysis, 24(7), 916-922. doi:10.1016/j.jfca.2011.03.008Shankar, M. U., Levitan, C. A., Prescott, J., & Spence, C. (2009). The Influence of Color and Label Information on Flavor Perception. Chemosensory Perception, 2(2), 53-58. doi:10.1007/s12078-009-9046-4Singh, P., Kesharwani, R. K., & Keservani, R. K. (2017). Antioxidants and Vitamins. Sustained Energy for Enhanced Human Functions and Activity, 385-407. doi:10.1016/b978-0-12-805413-0.00024-7Tanaka M. &Terauchi M.(1999).Cocoa powder rich in polyphenols process for producing the same and modified cocoa containing the same. US6485772B1.Taş, N. G., & Gökmen, V. (2016). Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International, 89, 930-936. doi:10.1016/j.foodres.2015.12.021Terink J. &Brandon M. J.(1981).Alkalized cocoa powders and foodstuffs containing such powders. US4435436A.Todorovic, V., Milenkovic, M., Vidovic, B., Todorovic, Z., & Sobajic, S. (2017). Correlation between Antimicrobial, Antioxidant Activity, and Polyphenols of Alkalized/Nonalkalized Cocoa Powders. Journal of Food Science, 82(4), 1020-1027. doi:10.1111/1750-3841.13672Tomas-Barberán, F. A., Cienfuegos-Jovellanos, E., Marín, A., Muguerza, B., Gil-Izquierdo, A., Cerdá, B., … Espín, J. C. (2007). A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 55(10), 3926-3935. doi:10.1021/jf070121jTotlani, V. M., & Peterson, D. G. (2005). Reactivity of Epicatechin in Aqueous Glycine and Glucose Maillard Reaction Models:  Quenching of C2, C3, and C4 Sugar Fragments. Journal of Agricultural and Food Chemistry, 53(10), 4130-4135. doi:10.1021/jf050044xTotlani, V. M., & Peterson, D. G. (2006). Influence of Epicatechin Reactions on the Mechanisms of Maillard Product Formation in Low Moisture Model Systems. Journal of Agricultural and Food Chemistry, 55(2), 414-420. doi:10.1021/jf0617521Trout R. B.(2001).Method for making dutched cocoa. EP1278428B1.Turcotte, A.-M., Scott, P. M., & Tague, B. (2013). Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Research, 29(3), 193-201. doi:10.1007/s12550-013-0167-xWang, R., Wang, T., Zheng, Q., Hu, X., Zhang, Y., & Liao, X. (2012). Effects of high hydrostatic pressure on color of spinach purée and related properties. Journal of the Science of Food and Agriculture, 92(7), 1417-1423. doi:10.1002/jsfa.4719Wiant M. J. William R. Lynch W. R. &LeFreniere R. C.(1989).Method for producing deep red and black cocoa. US5009917A.Wissgott U.(1988).Process of alkalization of cocoa in aqueous phase. US4784866A.Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. doi:10.1016/s0963-9969(00)00068-5Zhang, L., Xia, Y., & Peterson, D. G. (2014). Identification of Bitter Modulating Maillard-Catechin Reaction Products. Journal of Agricultural and Food Chemistry, 62(33), 8470-8477. doi:10.1021/jf502040eZhu, Q. Y., Holt, R. R., Lazarus, S. A., Ensunsa, J. L., Hammerstone, J. F., Schmitz, H. H., & Keen, C. L. (2002). Stability of the Flavan-3-ols Epicatechin and Catechin and Related Dimeric Procyanidins Derived from Cocoa. Journal of Agricultural and Food Chemistry, 50(6), 1700-1705. doi:10.1021/jf011228

    The household economic burden for acute coronary syndrome survivors in Australia

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Studies of chronic diseases are associated with a financial burden on households. We aimed to determine if survivors of acute coronary syndrome (ACS) experience household economic burden and to quantify any potential burden by examining level of economic hardship and factors associated with hardship. Methods: Australian patients admitted to hospital with ACS during 2-week period in May 2012, enrolled in SNAPSHOT ACS audit and who were alive at 18 months after index admission were followed-up via telephone/paper survey. Regression models were used to explore factors related to out-of-pocket expenses and economic hardship. Results: Of 1833 eligible patients at baseline, 180 died within 18 months, and 702 patients completed the survey. Mean out-of-pocket expenditure (n = 614) in Australian dollars was A258.06(median:A258.06 (median: A126.50) per month. The average spending for medical services was A120.18(SD:A120.18 (SD: A310.35) and medications was A66.25(SD:A66.25 (SD: A80.78). In total, 350 (51 %) of patients reported experiencing economic hardship, 78 (12 %) were unable to pay for medical services and 81 (12 %) could not pay for medication. Younger age (18–59 vs ≥80 years (OR): 1.89), no private health insurance (OR: 2.04), pensioner concession card (OR: 1.80), residing in more disadvantaged area (group 1 vs 5 (OR): 1.77), history of CVD (OR: 1.47) and higher out-of-pocket expenses (group 4 vs 1 (OR): 4.57) were more likely to experience hardship. Conclusion: Subgroups of ACS patients are experiencing considerable economic burden in Australia. These findings provide important considerations for future policy development in terms of the cost of recommended management for patients
    corecore