8 research outputs found

    Mycoplasma Genitalium Among Women With Nongonococcal, Nonchlamydial Pelvic Inflammatory Disease

    Get PDF
    Pelvic inflammatory disease (PID) is a frequent condition of young women, often resulting in reproductive morbidity. Although Neisseria gonorrhoeae and/or Chlamydia trachomatis are/is recovered from approximately a third to a half of women with PID, the etiologic agent is often unidentified. We need PCR to test for M genitalium among a pilot sample of 50 women with nongonococcal, nonchlamydial endometritis enrolled in the PID evaluation and clinical health (PEACH) study. All participants had pelvic pain, pelvic organ tenderness, and leukorrhea, mucopurulent cervicitis, or untreated cervicitis. Endometritis was defined as ≥5 surface epithelium neutrophils per ×400 field absent of menstrual endometrium and/or ≥2 stromal plasma cells per ×120 field. We detected M genitalium in 7 (14%) of the women tested: 6 (12%) in cervical specimens and 4 (8%) in endometrial specimens. We conclude that M genitalium is prevalent in the endometrium of women with nongonococcal, nonchlamydial PID

    Intrastrain Heterogeneity of the mgpB Gene in Mycoplasma genitalium Is Extensive In Vitro and In Vivo and Suggests that Variation Is Generated via Recombination with Repetitive Chromosomal Sequences

    No full text
    Mycoplasma genitalium is associated with reproductive tract disease in women and may persist in the lower genital tract for months, potentially increasing the risk of upper tract infection and transmission to uninfected partners. Despite its exceptionally small genome (580 kb), approximately 4% is composed of repeated elements known as MgPar sequences (MgPa repeats) based on their homology to the mgpB gene that encodes the immunodominant MgPa adhesin protein. The presence of these MgPar sequences, as well as mgpB variability between M. genitalium strains, suggests that mgpB and MgPar sequences recombine to produce variant MgPa proteins. To examine the extent and generation of diversity within single strains of the organism, we examined mgpB variation within M. genitalium strain G-37 and observed sequence heterogeneity that could be explained by recombination between the mgpB expression site and putative donor MgPar sequences. Similarly, we analyzed mgpB sequences from cervical specimens from a persistently infected woman (21 months) and identified 17 different mgpB variants within a single infecting M. genitalium strain, confirming that mgpB heterogeneity occurs over the course of a natural infection. These observations support the hypothesis that recombination occurs between the mgpB gene and MgPar sequences and that the resulting antigenically distinct MgPa variants may contribute to immune evasion and persistence of infection

    Pilot Study of COBAS PCR and Ligase Chain Reaction for Detection of Rectal Infections Due to Chlamydia trachomatis

    No full text
    We tested rectal specimens from men who have sex with men for Chlamydia trachomatis by using COBAS PCR (Roche Diagnostics) and ligase chain reaction LCR (Abbott laboratories) and compared three PCR specimen-processing procedures. Chlamydiae were detected by one or more procedures in 22 of 186 specimens. All three PCR tests were positive for 17 specimens, all of which also tested positive by LCR
    corecore