277 research outputs found

    Random Curves by Conformal Welding

    Get PDF
    We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to SLE(κ)(\kappa) for κ<4\kappa<4.Comment: 5 page

    Extremal Mappings of Finite Distortion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135425/1/plms0655.pd

    Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions

    Get PDF
    We study the higher gradient integrability of distributional solutions u to the equation div(σ∇u) = 0 in dimension two, in the case when the essential range of σ consists of only two elliptic matrices, i.e., σ ∈ {σ1,σ2} a.e. in Ω. In [9], for every pair of elliptic matrices σ1 and σ2 exponents pσ1,σ2 ∈ (2,+∞) and qσ1,σ2 ∈ (1,2) have been found so that if u ∈ W1,qσ1,σ2(Ω) is solution to the elliptic equation then ∇u ∈ Lpσ1,σ2(Ω) and the optimality of the upper exponent pσ1,σ2 has been proved. In this paper we complement the above result by proving the optimality of the lower exponent qσ1,σ2. Precisely, we show that for every arbitrarily small δ, one can find a particular microgeometry, i.e. an arrangement of the sets σ-1(σ1) and σ-1(σ2), for which there exists a solution u to the corresponding elliptic equation such that ∇u ∈ Lqσ1,σ2-δ, but ∇u Ɇ Lqσ1,σ2-δ. The existence of such optimal microgeometries is achieved by convex integration methods, adapting to the present setting the geometric constructions provided in [2] for the isotropic case

    Mappings of least Dirichlet energy and their Hopf differentials

    Full text link
    The paper is concerned with mappings between planar domains having least Dirichlet energy. The existence and uniqueness (up to a conformal change of variables in the domain) of the energy-minimal mappings is established within the class Hˉ2(X,Y)\bar{\mathscr H}_2(X, Y) of strong limits of homeomorphisms in the Sobolev space W1,2(X,Y)W^{1,2}(X, Y), a result of considerable interest in the mathematical models of Nonlinear Elasticity. The inner variation leads to the Hopf differential hzhzˉˉdz⊗dzh_z \bar{h_{\bar{z}}} dz \otimes dz and its trajectories. For a pair of doubly connected domains, in which XX has finite conformal modulus, we establish the following principle: A mapping h∈Hˉ2(X,Y)h \in \bar{\mathscr H}_2(X, Y) is energy-minimal if and only if its Hopf-differential is analytic in XX and real along the boundary of XX. In general, the energy-minimal mappings may not be injective, in which case one observes the occurrence of cracks in XX. Nevertheless, cracks are triggered only by the points in the boundary of YY where YY fails to be convex. The general law of formation of cracks reads as follows: Cracks propagate along vertical trajectories of the Hopf differential from the boundary of XX toward the interior of XX where they eventually terminate before making a crosscut.Comment: 51 pages, 4 figure

    Probe method and a Carleman function

    Full text link
    A Carleman function is a special fundamental solution with a large parameter for the Laplace operator and gives a formula to calculate the value of the solution of the Cauchy problem in a domain for the Laplace equation. The probe method applied to an inverse boundary value problem for the Laplace equation in a bounded domain is based on the existence of a special sequence of harmonic functions which is called a {\it needle sequence}. The needle sequence blows up on a special curve which connects a given point inside the domain with a point on the boundary of the domain and is convergent locally outside the curve. The sequence yields a reconstruction formula of unknown discontinuity, such as cavity, inclusion in a given medium from the Dirichlet-to-Neumann map. In this paper, an explicit needle sequence in {\it three dimensions} is given in a closed form. It is an application of a Carleman function introduced by Yarmukhamedov. Furthermore, an explicit needle sequence in the probe method applied to the reduction of inverse obstacle scattering problems with an {\it arbitrary} fixed wave number to inverse boundary value problems for the Helmholtz equation is also given.Comment: 2 figures, final versio

    Incompatible sets of gradients and metastability

    Full text link
    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L1L^1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiment and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea

    Full-wave invisibility of active devices at all frequencies

    Full text link
    There has recently been considerable interest in the possibility, both theoretical and practical, of invisibility (or "cloaking") from observation by electromagnetic (EM) waves. Here, we prove invisibility, with respect to solutions of the Helmholtz and Maxwell's equations, for several constructions of cloaking devices. Previous results have either been on the level of ray tracing [Le,PSS] or at zero frequency [GLU2,GLU3], but recent numerical [CPSSP] and experimental [SMJCPSS] work has provided evidence for invisibility at frequency k≠0k\ne 0. We give two basic constructions for cloaking a region DD contained in a domain Ω\Omega from measurements of Cauchy data of waves at \p \Omega; we pay particular attention to cloaking not just a passive object, but an active device within DD, interpreted as a collection of sources and sinks or an internal current.Comment: Final revision; to appear in Commun. in Math. Physic

    Limiting Carleman weights and anisotropic inverse problems

    Get PDF
    In this article we consider the anisotropic Calderon problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for anisotropic inverse problems, via the attenuated geodesic X-ray transform. Earlier results in dimension n≥3n \geq 3 were restricted to real-analytic metrics.Comment: 58 page
    • …
    corecore