3 research outputs found
Assessment of a Wind Turbine Blade Erosion Lifetime Prediction Model with Industrial Protection Materials and Testing Methods
Leading edge protection (LEP) coating systems are applied to protect turbine blade edges from rain erosion. The performance of a LEP system is assessed in an accelerated rain erosion test (RET) as a metric for industrial application, but these tests are expensive. Modelling methods are available to predict erosion, based on fundamental material properties, but there is a lack of validation. The Springer model (1976) is analysed in this work to assess it as a tool for using material fundamental properties to predict the time to failure in a rain erosion test. It has been applied, referenced and industry validated with important partial considerations. The method has been applied successfully for erosion damage by wear performance prediction when combined with prior material data from rain erosion test (RET), instead of obtaining it directly from fundamental properties measured separately as Springer proposed. The method also offers accurate predictions when coupled with modified numerical parameters obtained from experimental RET testing data. This research aims to understand the differences between the experimental data used by Springer and the current industry approach to rain erosion testing, and to determine how it may introduce inaccuracies into lifetime predictions of current LEP systems, since they are very different to those tested in the historic modelling validation. In this work, a review of the modelling is presented, allowing for the understanding of key issues of its computational implementation and the required experimental material characterisation. Modelling results are discussed for different original application issues and industry-related LEP configuration cases, offering the reader to interpret the limits of the performance prediction when considering the variation in material fundamental properties involved
Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades
Leading edge erosion of wind turbine blades is a major contributor to wind farm energy yield losses and maintenance costs. Presented is a multidisciplinary framework for predicting rain erosion lifetimes of wind turbine blades. Key aim is assessing the sensitivity of lifetime predictions to: modeling aspects (material erosion model, blade aerodynamics), input data and/or their preprocessing (joint frequency distribution of wind speed and droplet size based on synchronous site-specific measurements versus frequency distribution generated with partly site-agnostic modeling standards, wind speed records of nacelle anemometer or extrapolated at hub height from met masts), and environmental conditions (UV weathering). The analyses consider a Northwest England onshore site where a utility-scale turbine is operational, focus on a reference 5 MW turbine assumed operational at the site, and use a typical leading edge coating material. It is found that the largest variations in erosion lifetime predictions are due to material erosion model (based on rain erosion test data or fundamental material properties) and wind and rain model (measurement-based joint wind speed and droplet size distribution or standard-based modeled distribution). The use of joint wind and rain distribution also enables identifying wind/rain states with highest erosion potential, knowledge paramount to deploying erosion-safe turbine control