2 research outputs found

    Histamine Poisoning from Ingestion of Fish or Scombroid Syndrome

    No full text
    The scombroid poisoning is due to the ingestion of poorly preserved fish (especially tuna, sardines, and mackerel) out of the cold chain. Under the influence of the proliferation of gram negative bacteria that occurs for heating, the histidine content in the muscle of the fish is converted into histamine, by the action of the enzyme histidine decarboxylase. If the histamine is ingested in large quantities, it causes an anaphylactoid reaction with a variety of symptoms from moderate to severe to life-threating. We will describe two cases that came under our observation after consuming a meal of bluefin tuna. The diagnosis of scombroid syndrome was made on the basis of the anamnestic data and the clinical one. The rapid resolution of the signs and symptoms after treatment with histamines H1-H2 receptor blockers confirmed the suspected diagnosis

    A nanoscale interface promoting molecular and functional differentiation of neural cells

    Get PDF
    Potassium channels and aquaporins expressed by astrocytes are key players in the maintenance of cerebral homeostasis and in brain pathophysiologies. One major challenge in the study of astrocyte membrane channels in vitro, is that their expression pattern does not resemble the one observed in vivo. Nanostructured interfaces represent a significant resource to control the cellular behaviour and functionalities at micro and nanoscale as well as to generate novel and more reliable models to study astrocytes in vitro. However, the potential of nanotechnologies in the manipulation of astrocytes ion channels and aquaporins has never been previously reported. Hydrotalcite-like compounds (HTlc) are layered materials with increasing potential as biocompatible nanoscale interface. Here, we evaluate the effect of the interaction of HTlc nanoparticles films with primary rat neocortical astrocytes. We show that HTlc films are biocompatible and do not promote gliotic reaction, while favouring astrocytes differentiation by induction of F-actin fibre alignment and vinculin polarization. Western Blot, Immunofluorescence and patch-clamp revealed that differentiation was accompanied by molecular and functional up-regulation of both inward rectifying potassium channel Kir 4.1 and aquaporin 4, AQP4. The reported results pave the way to engineering novel in vitro models to study astrocytes in a in vivo like condition
    corecore