84 research outputs found

    Replication of the association of chromosomal region 9p21.3 with generalized aggressive periodontitis (gAgP) using an independent case-control cohort

    Get PDF
    Background: The human chromosomal region 9p21.3 has been shown to be strongly associated with Coronary Heart Disease (CHD) in several Genome-wide Association Studies (GWAS). Recently, this region has also been shown to be associated with Aggressive Periodontitis (AgP), strengthening the hypothesis that the established epidemiological association between periodontitis and CHD is caused by a shared genetic background, in addition to common environmental and behavioural risk factors. However, the size of the analyzed cohorts in this primary analysis was small compared to other association studies on complex diseases. Using our own AgP cohort, we attempted to confirm the described associations for the chromosomal region 9p21.3. Methods: We analyzed our cohort consisting of patients suffering from the most severe form of AgP, generalized AgP (gAgP) (n = 130) and appropriate periodontally healthy control individuals (n = 339) by genotyping four tagging SNPs (rs2891168, rs1333042, rs1333048 and rs496892), located in the chromosomal region 9p21.3, that have been associated with AgP. Results: The results confirmed significant associations between three of the four SNPs and gAgP. The combination of our results with those from the study which described this association for the first time in a meta-analysis of the four tagging SNPs produced clearly lower p-values compared with the results of each individual study. According to these results, the most plausible genetic model for the association of all four tested SNPs with gAgP seems to be the multiplicative one. Conclusion: We positively replicated the finding of an association between the chromosomal region 9p21.3 and gAgP. This result strengthens support for the hypothesis that shared susceptibility genes within this chromosomal locus might be involved in the pathogenesis of both CHD and gAgP

    Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease

    Get PDF
    Periodontitis is a common human chronic inflammatory disease that results in the destruction of the tooth attachment apparatus and tooth loss. Although infections with periopathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are essential for inducing periodontitis, the nature and magnitude of the disease is determined by the host's immune response. Here, we investigate the role played by the NK killer receptor NKp46 (NCR1 in mice), in the pathogenesis of periodontitis. Using an oral infection periodontitis model we demonstrate that following F. nucleatum infection no alveolar bone loss is observed in mice deficient for NCR1 expression, whereas around 20% bone loss is observed in wild type mice and in mice infected with P. gingivalis. By using subcutaneous chambers inoculated with F. nucleatum we demonstrate that immune cells, including NK cells, rapidly accumulate in the chambers and that this leads to a fast and transient, NCR1-dependant TNF-α secretion. We further show that both the mouse NCR1 and the human NKp46 bind directly to F. nucleatum and we demonstrate that this binding is sensitive to heat, to proteinase K and to pronase treatments. Finally, we show in vitro that the interaction of NK cells with F. nucleatum leads to an NCR1-dependent secretion of TNF-α. Thus, the present study provides the first evidence that NCR1 and NKp46 directly recognize a periodontal pathogen and that this interaction influences the outcome of F. nucleatum-mediated periodontitis

    Identification of a Shared Genetic Susceptibility Locus for Coronary Heart Disease and Periodontitis

    Get PDF
    Recent studies indicate a mutual epidemiological relationship between coronary heart disease (CHD) and periodontitis. Both diseases are associated with similar risk factors and are characterized by a chronic inflammatory process. In a candidate-gene association study, we identify an association of a genetic susceptibility locus shared by both diseases. We confirm the known association of two neighboring linkage disequilibrium regions on human chromosome 9p21.3 with CHD and show the additional strong association of these loci with the risk of aggressive periodontitis. For the lead SNP of the main associated linkage disequilibrium region, rs1333048, the odds ratio of the autosomal-recessive mode of inheritance is 1.99 (95% confidence interval 1.33–2.94; P = 6.9×10−4) for generalized aggressive periodontitis, and 1.72 (1.06–2.76; P = 2.6×10−2) for localized aggressive periodontitis. The two associated linkage disequilibrium regions map to the sequence of the large antisense noncoding RNA ANRIL, which partly overlaps regulatory and coding sequences of CDKN2A/CDKN2B. A closely located diabetes-associated variant was independent of the CHD and periodontitis risk haplotypes. Our study demonstrates that CHD and periodontitis are genetically related by at least one susceptibility locus, which is possibly involved in ANRIL activity and independent of diabetes associated risk variants within this region. Elucidation of the interplay of ANRIL transcript variants and their involvement in increased susceptibility to the interactive diseases CHD and periodontitis promises new insight into the underlying shared pathogenic mechanisms of these complex common diseases

    Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis.

    Get PDF
    Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG–/–) mice exhibit severe alveolar bone loss with enhanced bone resorption. WP9QY (W9) peptide binds to RANKL and blocks RANKL-induced osteoclastogenesis. W9 is also reported to stimulate bone formation in vivo. Here, we show that treatment with W9 restores alveolar bone loss in OPG–/–mice by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Administration of W9 or risedronate, a bisphosphonate, to OPG–/–mice significantly decreased the osteoclast number in the alveolar bone. Interestingly, treatment with W9, but not risedronate, enhanced Wnt/β-catenin signaling and induced alveolar bone formation in OPG–/–mice. Expression of sclerostin, an inhibitor of Wnt/β-catenin signaling, was significantly lower in tibiae of OPG–/–mice than in wild-type mice. Treatment with risedronate recovered sclerostin expression in OPG–/–mice, while W9 treatment further suppressed sclerostin expression. Histomorphometric analysis confirmed that bone formation-related parameters in OPG–/–mice, such as osteoblast number, osteoblast surface and osteoid surface, were increased by W9 administration but not by risedronate administration. These results suggest that treatment of OPG–/–mice with W9 suppressed osteoclastogenesis by inhibiting RANKL signaling and enhanced osteoblastogenesis by attenuating sclerostin expression in the alveolar bone. Taken together, W9 may be a useful drug to prevent alveolar bone loss in periodontitis

    Anti-inflammatory effects of shikonin in human periodontal ligament cells

    No full text
    Context: Shikonin (SHI), an active component extracted from Radix Arnebiae, has been reported to possess anti-inflammatory properties in various cells. However, its effect on lipopolysaccharide (LPS)-stimulated human periodontal ligament cells (hPDLCs) is unknown. Objective: To investigate the effects of SHI on the expression of inflammatory related cytokines in LPS-stimulated hPDLCs. Materials and methods: The effects of SHI (0.125, 0.25, 0.5, 1, and 2 μg/mL) on hPDLCs proliferation for 1, 3 and 7 days were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of interleukin-1 (IL-1), IL-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-2 (MMP-2), MMP-9 and cyclooxygenase-2 (COX-2) were detected in hPDLCs following SHI treatment (0.25 and 0.5 μg/mL) using Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). The signaling pathways triggered by SHI in hPDLC were evaluated using western blotting. Results: LD50 of SHI is 1.7 μg/mL (day 1) and 1.1 μg/mL (day 3 and 7) in hPDLCs. No morphological changes were observed when hPDLCs were treated with LPS only (1 μg/mL) or LPS with SHI (0.25 and 0.5 μg/mL). Data from qRT-PCR suggests that SHI attenuates LPS-induced increases of IL-1, IL-6, TNF-α, MMP-2, MMP-9 and COX-2 in hPDLCs. Down-regulation of phosphorylated extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB), and up-regulation of I-κB, were observed in LPS-stimulated hPDLCs after exposed to SHI at 0.25 or 0.5 μg/mL. Discussion and conclusions: SHI possesses anti-inflammatory effects in LPS-stimulated hPDLCs via phospho-ERK and NF-κB/I-κB signaling pathways; this suggests that SHI may hold potential as an anti-inflammatory agent against periodontitis
    corecore