3 research outputs found

    Reduction of malaria prevalence after introduction of artemisinin-combination-therapy in Mbeya Region, Tanzania: results from a cohort study with 6773 participants

    Get PDF
    Background: A marked decline in malaria morbidity and mortality has been reported after the introduction of artemisinin-based combination therapy (ACT) in high malaria prevalence countries in Africa. Data on the impact of ACT and on the prevalence of malaria has so far been scarce for Southwest Tanzania. Methods: Between 2005 and 2011, a large general population cohort in the Mbeya Region in the south-west of Tanzania has been surveyed within the EMINI-study (Evaluation and Monitoring of the Impact of New Interventions). Participants were examined once per year, including rapid diagnostic testing for malaria. ACT was introduced in the region according to national guidelines in the time period 2006/2007, replacing sulfadoxine/pyrimethamine as first-line therapy. In four study sites, 6773 individuals who participated in the first two of three consecutive survey visits in the period from 2006 to 2009 were included in this analysis. The prevalence of Plasmodium infection prior to and after the introduction of ACT was compared by logistic regression, with consideration of climatic variability, age, sex, socioeconomic status and bed net use as potential confounders. Results: A significant reduction over time in the prevalence of Plasmodium falciparum infection from 2.5 to 0.3% was shown across the four study sites. The decline was not explained by other factors included in the analysis, therefore, the decline over time most likely reflects the impact of introduction of ACT in the study area. Conclusions: The longitudinal study showed a significant and relevant decline in the prevalence of P. falciparum infection after introduction of ACT, which could not be explained by potential confounders. The data suggests that artemisinin-based combinations are not only an effective instrument for reduction of immediate morbidity and mortality, but also for reduction of transmission rates

    Schistosoma haematobium infection and environmental factors in Southwestern Tanzania: A cross-sectional, population-based study.

    Get PDF
    Schistosomiasis is a leading cause of morbidity in Africa. Understanding the disease ecology and environmental factors that influence its distribution is important to guide control efforts. Geographic information systems have increasingly been used in the field of schistosomiasis environmental epidemiology. This study reports prevalences of Schistosoma haematobium infection and uses remotely sensed and questionnaire data from over 17000 participants to identify environmental and socio-demographic factors that are associated with this parasitic infection. Data regarding socio-demographic status and S. haematobium infection were obtained between May 2006 and May 2007 from 17280 participants (53% females, median age = 17 years) in the Mbeya Region, Tanzania. Combined with remotely sensed environmental data (vegetation cover, altitude, rainfall etc.) this data was analyzed to identify environmental and socio-demographic factors associated with S. haematobium infection, using mixed effects logistic regression and geostatistical modelling. The overall prevalence of S. haematobium infection was 5.3% (95% confidence interval (CI): 5.0-5.6%). Multivariable analysis revealed increased odds of infection for school-aged children (5-15 years, odds ratio (OR) = 7.8, CI: 5.9-10.4) and the age groups 15-25 and 25-35 years (15-25 years: OR = 5.8, CI: 4.3-8.0, 25-35 years: OR = 1.6, CI: 1.1-2.4) compared to persons above 35 years of age, for increasing distance to water courses (OR = 1.4, CI: 1.2-1.6 per km) and for proximity to Lake Nyasa (4 km. Odds of infection decreased with higher altitude (OR = 0.7, CI: 0.6-0.8 per 100 m increase) and with increasing enhanced vegetation index EVI (OR = 0.2, CI: 0.1-0.4 per 0.1 units). When additionally adjusting for spatial correlation population density became a significant predictor of schistosomiasis infection (OR = 1.3, CI: 1.1-1.5 per 1000 persons/km2) and altitude turned non-significant. We found highly focal geographical patterns of S. haematobium infection in Mbeya Region in Southwestern Tanzania. Despite low overall prevalence our spatially heterogeneous results show that some of the study sites suffer from a considerable burden of S. haematobium infection, which is related to various socio-demographic and environmental factors. Our results could help to design more effective control strategies in the future, especially targeting school-aged children living in low altitude sites and/or crowded areas as the persons at highest need for preventive chemotherapy
    corecore