99 research outputs found

    Classification, caractérisation et facteurs de variabilité spatiale des régimes hydrologiques naturels au Québec (Canada). Approche éco-géographique

    Get PDF
    Nous proposons onze nouvelles variables pour classifier, caractĂ©riser et analyser les facteurs de variabilitĂ© spatiale des rĂ©gimes hydrologiques des affluents du fleuve Saint-Laurent au QuĂ©bec. Ces variables se rapportent exclusivement aux dĂ©bits mensuels et utilisent quatre (volume d’écoulement, pĂ©riode d’occurrence, durĂ©e et amplitude de variabilitĂ© intra-annuelle des dĂ©bits) des cinq critĂšres proposĂ©s par Richter et al. (1996) pour caractĂ©riser Ă©cologiquement les rĂ©gimes hydrologiques.L’analyse en composantes principales de ces onze variables hydrologiques a permis d’extraire trois composantes principales significatives aprĂšs rotation d’axes par la mĂ©thode varimax. La premiĂšre composante principale est associĂ©e aux dĂ©bits saisonniers hivernaux et aux mois d’occurrence des dĂ©bits mensuels maximums et minimums. La seconde composante est associĂ©e aux dĂ©bits saisonniers printaniers et au rapport entre ces dĂ©bits et les dĂ©bits estivaux. Enfin, la derniĂšre composante est associĂ©e au coefficient d’immodĂ©ration (rapport entre les dĂ©bits mensuels maximums et minimums) et aux dĂ©bits mensuels minimums. La variance totale expliquĂ©e par ces trois composantes, Ă  part presqu’égale, est d’environ 83%. Sur la base des signes de notes factorielles sur les trois composantes principales, les 72 riviĂšres analysĂ©es ont Ă©tĂ© groupĂ©es en huit rĂ©gimes hydrologiques naturels non contigus dans l’espace. Les caractĂ©ristiques de chaque rĂ©gime hydrologique ont Ă©tĂ© clairement dĂ©finies.Quant aux facteurs environnementaux qui influencent la variabilitĂ© spatiale des rĂ©gimes hydrologiques, il est apparu que les six variables hydrologiques associĂ©es aux trois composantes principales sont principalement influencĂ©es par la tempĂ©rature de l’air ainsi que la superficie couverte par les forĂȘts, les lacs et les marais.Several classifications of hydrologic regimes have already been proposed in Quebec. However, these classifications are exclusively based upon the magnitude of discharge (annual and monthly discharge, annual maximum and minimum discharge). This hydrologic parameter isn’t sufficient to describe the ecological hydrologic regime. Thus, Richter et al. (1996) suggested five fundamental characteristics to describe hydrologic regimes that regulate ecological processes in river ecosystems :1. The magnitude of the water condition at any given time. It is a measure of the availability or suitability of a habitat. It defines such habitat attributes as wetted area or habitat volume, or the position of the water table relative to wetland or riparian plant rooting zones.2. The timing of occurrence of particular water conditions can determine whether certain life-cycle requirements can influence the degree of stress or mortality associated with extreme water conditions such as flood or droughts.3. The frequency of occurrence of specific water conditions such as droughts or floods may be tied to reproduction or mortality events for various species, thereby influencing population dynamics.4. The duration of time over which a particular life-cycle phase can be completed or the degree to which stressful effects such as inundation or drought can accumulate.5. The rate of change (range) in water conditions may be related to the stranding of certain organisms along the water’s edge, in ponded depressions, or the ability of plant roots to maintain contact with phreatic water supplies.The application of these characteristics requires a daily discharge time series, but these data are not always available. To overcome this difficulty, we propose eleven new hydrological variables exclusively based upon monthly discharge data. These new variables describe four (magnitude, timing of occurrence, duration of time and the rate of change) of the five characteristics of hydrologic regimes suggested by Richter et al. (1996). The eleven new variables are as follows: seasonal discharge coefficients (%); monthly maximum and minimum discharge coefficients (%); median Julian day of occurrence of maximum monthly discharge; median Julian day of occurrence of monthly minimum discharge; spring and winter seasonal discharge ratios; spring and summer seasonal discharge ratios and monthly maximum and minimum discharge ratios.We have isolated, using principal component analysis (PCA), three significant principal components after varimax rotation. The first principal component was linked with the magnitude of winter discharge and the timing of monthly maximum and minimum discharge. The second principal component was associated with the magnitude of spring seasonal discharge and the spring and summer seasonal discharge ratio. The third component was linked with the coefficient of immoderation (monthly maximum/minimum discharge ratio) and the magnitude of monthly minimum discharge. The three principal components explain, almost weight for weight, about 83% of the total variance. On the basis of signs of loadings for these three components, 72 rivers were analysed and grouped into eight natural hydrologic regimes that are not geographically contiguous. For example, the first hydrologic regime was characterized by high winter discharge (> 12%), timing of monthly maximum discharge in April, high summer discharge (> 54%), high spring and summer seasonal discharge ratios (> 3.5), high monthly maximum and minimum discharge (> 12) and low monthly minimum discharge ( 0ÂșC. The correlation analysis revealed the following mean results:- The winter seasonal discharge was influenced by the forest surface area (negative correlation) and both annual and seasonal temperature (positive correlation).- The timing of the monthly maximum discharge was influenced by the length of rivers (positive correlation), the forest and lake surface area (positive correlation) and both annual and seasonal temperatures (negative correlation).- The spring seasonal discharge was influenced by the length of rivers (negative correlation), the mean basin slope (positive correlation), the forest surface area (positive correlation), the lake surface area (negative correlation), the annual precipitation (negative correlation) and the winter and summer seasonal temperature (negative correlation).- The spring and summer seasonal discharge ratio was negatively correlated with the drainage basin, the length of rivers, the mean basin drainage, the annual precipitation and the number of winter days with temperature > 0ÂșC, but was positively correlated with annual and seasonal temperature.- The monthly maximum and minimum discharge was positively correlated with forest surface area but negatively correlated with lake surface area, annual and seasonal temperature.- The monthly minimum discharge was negatively correlated with forest surface area but positively correlated with annual and seasonal discharge.From this correlation analysis, it appeared that temperature was the only factor that influenced the spatial variability of all hydrological variables, followed by forest and lake surface area. The influence of precipitation on this spatial variability was very weak

    Impacts des barrages sur les caractéristiques des débits moyens annuels en fonction du mode de gestion et de la taille des bassins versants au Québec

    Get PDF
    Nous avons comparĂ© les impacts des barrages sur les caractĂ©ristiques (volume d’écoulement-frĂ©quence, variabilitĂ© interannuelle et forme de courbe de distribution) des dĂ©bits moyens annuels dans les trois rĂ©gimes rĂ©gularisĂ©s observĂ©s (inversion, homogĂ©nĂ©isation et type naturel) au QuĂ©bec. Nous avons appliquĂ© la mĂ©thode de proportionnalitĂ© qui consiste Ă  comparer les caractĂ©ristiques des dĂ©bits des riviĂšres naturelles et celles des riviĂšres rĂ©gularisĂ©es en fonction de la taille des bassins versants. En ce qui concerne le volume d’écoulement-frĂ©quence et sa variabilitĂ© interannuelle, le changement a Ă©tĂ© observĂ© seulement en rĂ©gime d’inversion. Il se traduit par une baisse des dĂ©bits moyens annuels durant les annĂ©es hydrologiques sĂšches et une variabilitĂ© interannuelle relativement forte par rapport aux riviĂšres naturelles. Ces changements sont attribuĂ©s principalement au mode de gestion des rĂ©servoirs car on lĂąche moins d’eau durant ces annĂ©es hydrologiques sĂšches. Enfin, les changements des coefficients d’asymĂ©trie et d’aplatissement ont Ă©tĂ© observĂ©s surtout en rĂ©gime d’homogĂ©nĂ©isation. Cette Ă©tude dĂ©montre que les barrages peuvent modifier toutes les caractĂ©ristiques des dĂ©bits moyens annuels contrairement Ă  l’opinion couramment admise.We compared the impacts of dams on the characteristics (magnitude-frequency, inter-annual variability and distribution curve shape) of the mean annual flows in three regulated flow regimes (inversion, homogenization and natural type) in QuĂ©bec. We applied the “proportionality method”, which consists of comparing the flow characteristics of natural rivers to regulated rivers according to watershed size. A change in the flow-frequency volume and its inter-annual variability was observed only in the inversion flow regime. This result translates into a decrease in average annual flows during dry hydrological years and a relatively high inter-annual variability relative to natural rivers. These changes are mainly ascribed to the reservoir management mode because less water is released during dry hydrological years. Finally, the changes of the coefficients of asymmetry and skewness are particularly observed in homogenization flow regime. This study shows that, contrary to the commonly accepted opinion, dams can alter all the characteristics of annual average flows

    Analyse d'impacts d'un barrage sur le régime hydrologique de la riviÚre Matawin (Québec, Canada)

    Get PDF
    MalgrĂ© la prĂ©sence de nombreux barrages au QuĂ©bec, peu d'Ă©tudes ont Ă©tĂ© consacrĂ©es Ă  l'analyse des impacts de ces ouvrages sur les rĂ©gimes hydrologiques des cours d'eau. La prĂ©sente note a pour but d'analyser les impacts d'un barrage sur le rĂ©gime hydrologique de la riviĂšre Matawin en comparant le rĂ©gime hydrologique de la riviĂšre en amont (1390 km2) et en aval (4070 km2) du barrage pendant une pĂ©riode de 60 ans (1930-1990) et sur trois Ă©chelles temporelles distinctes. A l'Ă©chelle interannuelle, l'influence du barrage se manifeste par une persistance plus marquĂ©e des effets des Ă©pisodes humides ou secs ainsi qu'une hausse ou une baisse des dĂ©bits moyens annuels respectivement durant ces pĂ©riodes. Mais cette succession et cette persistance n'ont pas affectĂ© significativement la stationnaritĂ© de la sĂ©rie hydrologique. Aux Ă©chelles mensuelles et saisonniĂšre, l'influence du barrage se manifeste par une inversion du rĂ©gime hydrologique caractĂ©risĂ©e par une hausse des dĂ©bits hivernaux et une baisse des dĂ©bits printaniers. Cette influence se traduit aussi par une baisse significative du dĂ©bit maximum mensuel mais une hausse du dĂ©bit minimum mensuel. Il en rĂ©sulte une diminution du coefficient d'immodĂ©ration. A l'Ă©chelle journaliĂšre, le barrage modifie la pĂ©riode d'occurrence des dĂ©bits extrĂȘmes minimums et maximums. Il provoque la diminution significative des dĂ©bits extrĂȘmes minimums et maximums. Mais l'Ă©crĂȘtement des crues est modĂ©rĂ© pour les dĂ©bits de rĂ©currence=10 ans. L'impact le plus significatif du barrage de Matawin est sans nul doute l'inversion du rĂ©gime hydrologique dont les consĂ©quences morphologiques et biologiques ne sont pas encore documentĂ©es dans la littĂ©rature scientifique canadienne. Cette inversion rĂ©sulte du faible Ă©coulement hivernal et d'une forte production de l'Ă©nergie Ă©lectrique pendant la saison froide.Few studies have characterized the effect of dams on the hydrologic regime of rivers in Quebec. This is rather strange given the large number of hydroelectric dams that have been constructed in the province. To shed some light on the environmental impact of these dams, this paper aims at describing and quantifying the effect of the Matawin River dam on the hydrologic regime of the river on an annual, seasonal and daily basis. The Matawin River is located north of the St-Lawrence River and is a tributary of the St-Maurice River. The Matawin dam was built in 1929 by Shawinigan Water and Power Co. mainly to supply the Gabelle hydroelectric dam on the Saint-Maurice River. The dam is 26 m high and the storage capacity of the reservoir is 348,000,000 m3 when full. The catchment area of the dam is 4070 km2.To assess the effect of the dam, we used various statistical methods to compare discharge time series over 60 years as measured at two gauging stations on the river. One of the stations is located upstream whereas the other one is located downstream from the Matawin dam. The upstream drainage basin covers an area of 1390 km2. No major tributaries are found between the two gauging stations, thus allowing us to ascertain the effect of the Matawin dam on the natural hydrologic regime of the river at different time scales.On the annual scale, no difference in the mean annual discharge is observed upstream and downstream from the dam. The specific discharges upstream and downstream from the river's dam are respectively 17.2 and 17.1 l/s/km2. This is to be expected because the reservoir is used neither for irrigation nor for derivation. However, analysis of the interannual variability of mean annual discharges, using the Hanning low pass filter, reveals that wet and dry periods are far more persistent downstream than upstream from the dam. This persistence can be seen to occur within the two dry periods of 1930-1960 and of 1980-1990 and during the wet period from 1965 to 1980. This persistence does not affect the stationarity of the discharge time series downstream from the dam as no significant changes are detected from Mann-Kendall and Pettitt statistical tests.On the monthly and seasonal scale, the comparison of the time of occurrence of maximum and minimum discharges shows a strong inversion within the hydrologic regime. Upstream from the dam, the maximum and minimum discharges are measured respectively during the spring and the winter. Downstream from the dam, the regime is inverted, with the maximum and minimum discharges being measured in winter and spring respectively. This inversion is closely associated with the production of hydroelectricity during the cold winter season when large amounts of water are released from the reservoir. Furthermore, is worth noticing that the monthly and seasonal coefficients of maximum discharge are lowered downstream from the dam whereas those for the minimum discharge remain similar.On a daily basis, the comparison of dates of occurrence for the lowest annual discharge downstream and upstream from the dam shows these are found at different times of the year. Upstream from the dam, most of the minimum daily discharges are measured in August and September whereas downstream from the dam, they largely occur during April. On the other hand, the maximum daily discharges are recorded almost exclusively in April and May upstream from the dam but can occur throughout the year downstream from it, with a marginally larger number in January.These results are relevant for the assessment of the environmental impacts of dams on rivers in the province of Quebec. For example, the inversion of maximum and minimum discharges is likely to have an important impact on the winter habitat characteristics by increasing the area of suitable habitat, but also by increasing the likelihood of sediment being transported during periods where usually only sporadic transport events occur. In the future, it would be crucial to understand the exact effect of the inversion on the morphological and biological components of the river dynamics

    Des modÚles biologiques à l'amélioration des plantes

    Get PDF

    Impacts des barrages sur les débits annuels minimums en fonction des régimes hydrologiques artificialisés au Québec (Canada)

    Get PDF
    Les dĂ©bits annuels minimums des riviĂšres dĂ©terminent le volume d’habitat minimum disponible pour assurer la survie des espĂšces aquatiques en pĂ©riode d’étiage. Dans cette Ă©tude, nous comparons les impacts de barrages sur les caractĂ©ristiques (pĂ©riode d’occurrence, magnitude, amplitude de variation et asymĂ©trie) de ces dĂ©bits dans trois rĂ©gimes hydrologiques artificialisĂ©s d’une part, et les dĂ©bits annuels minimums mesurĂ©s en aval des barrages aux normes de dĂ©bits rĂ©servĂ©s pour protĂ©ger les habitats du poisson au QuĂ©bec, d’autre part. Nous avons analysĂ© 72 stations appartenant aux rĂ©gimes artificialisĂ©s d’Inversion (26 stations), d’HomogĂ©nĂ©isation (18 stations) et de Type Naturel (28 stations). Toutes ces stations appartiennent au bassin versant du fleuve Saint-Laurent. La prĂ©sente analyse est fondĂ©e sur la comparaison des dĂ©bits mesurĂ©s en riviĂšres naturelles (75 stations) Ă  ceux mesurĂ©s en aval des barrages au moyen des mĂ©thodes de proportionnalitĂ© et graphique. Il ressort de ces comparaisons les principaux rĂ©sultats suivants.En rĂ©gime artificialisĂ© d’Inversion caractĂ©risĂ© par les dĂ©bits mensuels maximums en hiver et les dĂ©bits mensuels minimums au printemps, les impacts des barrages se traduisent par une hausse significative de frĂ©quence des dĂ©bits annuels minimums au printemps au moment de la fonte des neiges mais une baisse en Ă©tĂ©, une diminution significative de la magnitude des dĂ©bits pour les bassins versants de taille 10 000 km2.Annual minimum discharges represent a crucial hydrologic parameter for the health of aquatic ecosystems. They determine the volume of available habitat for aquatic species and influence the concentration of pollutant within the fluvial system during low flows. They are also of importance for instream infrastructures and for the regulation of fluvial transport. For these reasons, the minimum discharges constitute the main hydrologic parameters for which clear regulation have been defined in several countries. In the province of QuĂ©bec, albeit the large amount of dams on several important fluvial systems, there seems to exist a lack of studies examining their effects on the annual minimum discharges. This paper is aiming at highlighting the effects of dams (1) by examining their effect on the characteristics of annual minimum discharges for artificialised flow regimes in QuĂ©bec, and (2) by comparing those discharges with recommended instream flows to protect fish habitats.Firstly, the effect of dams on annual minimum discharges is examined for the three types of artificialised flow regimes found in QuĂ©bec. From the analysis of seasonal and monthly discharges, ASSANI et al. (2004) documented the three types of artificialised hydrologic regime downstream from dams: the inversion, the homogenization, and the natural type flow regimes. The inversion flow regime presents high monthly discharge values in winter and low monthly discharge values during spring. This type of regime occurs solely on the north shore of the St-Lawrence River and pertains to rivers with large reservoirs feeding in hydropower stations. The homogenization flow regime presents small annual fluctuations of the monthly discharge. The maximum monthly discharges are recorded during spring where- as the minimum monthly discharges frequently occur during fall. This type of regime is often associated with reservoirs created on large streams for which the storage of spring water is less important. This regime is observed mainly on the north shore of the St-Lawrence river. In the natural type flow regime, the maximum monthly discharges take place during spring snowmelt while minimum monthly discharges occur either during summer or winter. The annual natural flow characteristics are thus conserved albeit the existence of the dam. This regime pertains to dams with small reservoirs and it is found on both side of the St-Lawrence River.Secondly, annual mimimum discharges are compared with minimum instream flows recommended by BELZILE et al. (1997). These ones defined the minimum instream flows based on the different species of fish and their life cycle. Downstream from dams, the instream flows (Qr) can be estimated using the following relation:Qr = ek.Sawhere S represents the drainage area upstream from the dam; a and k are respectively regional and seasonal parameters. These parameters are associated to the ecohydrological region, to the season as well as to the critical phases of life cycle for the fish species found within the ecohydrological regions.From the Historical Stream Flow Summary of Environmental Canada, the distribution of discharge from 107 stations were selected and analysed. From those, 72 were located on rivers with dams and 75 on rivers with no regulation. On regulated rivers, 26, 18 and 28 were identified as belonging to the inversed, homogeneous and natural type regimes, respectively. All stations were located in the St-Lawrence drainage area. To highlight the effect of dams, we performed a comparison between the annual minimum discharges for stations on artificialised rivers to those from stations belonging to rivers with no regulation. The comparison is performed according to the size of the drainage basins (proportionality method) and uses a set of parametric and non-parametric statistical tests depending on the type of data. The proportionality method was chosen because of the non-availability of the discharges for the pre-dam periods. According to RICHTER et al. (1996), river flows can be described using several parameters relating to the daily discharges: the magnitude, the frequency, the duration, the timing and the rate of change (amplitude of the variability). The daily discharges required to compute these parameters were not available. The date of occurrence of annual minimum discharges, their magnitude, the interannual variability of the magnitude and the skewness of the distribution could however be obtained from the Historical Stream Flow Summary of Environmental Canada.The analysis of annual minimum discharges for the three types of artificialised flow regimes highlights several key elements associated with the effect of dams. For the inversion flow regime, the presence of dams increases and decreases significantly the occurrence of annual minimum discharges during spring and summer, respectively. For drainage area smaller than 10 000 km2, the magnitude of the annual minimum discharge is decreased significantly. Finally, the between-year variability is increased and the distribution presents a strong skewness. For the natural type flow regime, an increase in annual minimum discharges during the period between November and January can be observed as well as a significant decrease in magnitude for the small fluvial systems (drainage area 10 000 km2

    Analyse de l’influence de l’oscillation Arctique sur la variabilitĂ© interannuelle des prĂ©cipitations dans le bassin versant de la riviĂšre Saint-François (QuĂ©bec, Canada) au moyen de la mĂ©thode des corrĂ©lations canoniques

    Get PDF
    Le bassin versant de la riviĂšre Saint-François, situĂ© sur la rive sud (rive droite) du fleuve Saint-Laurent (QuĂ©bec, Canada), couvre une superficie d’environ 10 000 km2. Dans le but de dĂ©celer les facteurs climatiques qui influencent les prĂ©cipitations dans ce bassin versant, nous avons analysĂ© la succession des pĂ©riodes pluviomĂ©triques sĂšches et humides par la technique des moyennes glissantes sur cinq ans, d’une part, et la relation entre quatre indices climatiques (oscillation arctique, oscillation australe, oscillation nord-atlantique et la tempĂ©rature des eaux ocĂ©aniques de surface) et ces pĂ©riodes pluviomĂ©triques au moyen de l’analyse des corrĂ©lations canoniques, d’autre part. Nous avons analysĂ© les donnĂ©es pluviomĂ©triques mesurĂ©es Ă  trois stations reprĂ©sentatives des rĂ©gimes pluviomĂ©triques du bassin versant : Sherbrooke, Disraeli et Drummondville. Ces donnĂ©es couvrent une pĂ©riode de 76 ans (1914-1990).En ce qui concerne la variabilitĂ© interannuelle des prĂ©cipitations, nous avons dĂ©tectĂ© deux types de changement. Le premier type de changement, survenu autour de 1950, concerne la rĂ©partition des prĂ©cipitations Ă  l’échelle du bassin versant (changement spatial). Avant 1950, la succession des pĂ©riodes sĂšches et humides des prĂ©cipitations n’était pas synchrone (opposition des pĂ©riodes) mais elle l’est devenue aprĂšs 1950. Le second type de changement a Ă©tĂ© observĂ© autour des annĂ©es 1935 et 1970. Il correspond Ă  un changement des totaux pluviomĂ©triques au niveau des stations (changement quantitatif). Avant et aprĂšs 1935 et 1970, on passe ainsi des pĂ©riodes sĂšches aux pĂ©riodes humides ou vice versa selon les stations. En tenant compte de ces trois dates, nous avons observĂ© la succession des pĂ©riodes sĂšches et humides suivantes : 1) Avant 1950, entre 1914 et 1935, nous avons observĂ© une pĂ©riode sĂšche aux stations de Disraeli et de Sherbrooke mais une pĂ©riode humide Ă  la station de Drummondville. Entre 1936-1950, ces pĂ©riodes se sont inversĂ©es : humide Ă  Disraeli et Sherbrooke mais sĂšche Ă  Drummondville; 2) AprĂšs 1950, entre 1951 et 1970, les prĂ©cipitations Ă©taient dĂ©ficitaires aux trois stations. En revanche, elles sont devenues excĂ©dentaires aprĂšs 1970.L’analyse des corrĂ©lations canoniques entre les prĂ©cipitations et les indices climatiques a rĂ©vĂ©lĂ© les faits significatifs suivants : 1) Avant et aprĂšs 1950, les prĂ©cipitations sont positivement corrĂ©lĂ©es Ă  l’oscillation arctique (OA), mais cette corrĂ©lation est plus faible aprĂšs qu’avant 1950. Ainsi, l’augmentation des valeurs de OA entraĂźnerait une hausse de frĂ©quence des masses d’air en provenant du sud dans le bassin versant; 2) Lorsqu’on considĂšre les pĂ©riodes sĂšches et humides, OA est toujours positivement corrĂ©lĂ©e aux pĂ©riodes sĂšches Ă  la station de Sherbrooke.The Saint-François River watershed, located on the south shore of the St. Lawrence River (QuĂ©bec, Canada), covers an area of about 10,000 km2. To detect the climatic factors that influence precipitation in this watershed, we analyzed the succession of dry and wet pluviometric periods by a method of simple moving averages computed over five years. In addition, the relationship between four climatic indices (Arctic Oscillation, Southern Oscillation, North Atlantic Oscillation and Sea Surface Temperature) and these pluviometric periods was analyzed by means of canonical correlation analysis. We analyzed the pluviometric data measured over a 76-year period (1914-1990) at three stations representative of the watershed’s pluviometric regimes: Sherbrooke, Disraeli and Drummondville.Two types of change in the inter-annual variability of precipitation were detected. The first type of change, occuring circa 1950, concernend the distribution of precipitation throughout the watershed, i.e. spatial change. Before 1950, the succession of dry and wet precipitation periods was asynchronous (opposition of periods), but became synchronous after 1950. The second type of change, corresponding to a change in the pluviometric totals at the stations, i.e. quantitative change, was observed circa 1935 and 1970. There was, therefore, a shift from dry to wet periods or vice versa, prior to and following 1935 and 1970, depending on the station. By accounting for these three dates, we observed the succession of the following dry periods and wet periods. First, before 1950 and between 1914 and 1935, we observed a dry period at the Disraeli and Sherbrooke stations and a wet period at the Drummondville station. Between 1936 and 1950, these periods were reversed: wet periods at Disraeli and Sherbrooke but a dry period at Drummondville. Second, after 1950 and between 1951 and 1970, there was a precipitation deficit at all three stations, which, however, moved into a surplus phase after 1970.The canonical correlation analysis of precipitation levels and the climate indices revealed the following significant facts: 1) prior to and following 1950, precipitation was positively correlated to the Arctic Oscillation (AO) indices, but this correlation was weaker after 1950 than before; and 2) with respect to the wet and dry periods, the AO index is still positively correlated with the dry periods at the Sherbrooke station

    DĂ©veloppement d’une nouvelle mĂ©thode de rĂ©gionalisation basĂ©e sur le concept de « rĂ©gime des dĂ©bits naturels » : la mĂ©thode Ă©co-gĂ©ographique

    Get PDF
    Nous proposons une nouvelle mĂ©thode de rĂ©gionalisation des dĂ©bits fondĂ©e sur le concept de « rĂ©gime des dĂ©bits naturels » introduit en Ă©cologie aquatique : l’approche Ă©co-gĂ©ographique. Elle se distingue de deux approches de rĂ©gionalisation existantes (approches hydrologique et Ă©cologique) sur les trois points suivants : le choix des variables hydrologiques, l’échelle d’analyse et la finalitĂ© de la rĂ©gionalisation. En ce qui concerne le choix des variables hydrologiques, la nouvelle mĂ©thode est fondĂ©e sur le choix des caractĂ©ristiques des dĂ©bits et non sur les variables hydrologiques. Ces caractĂ©ristiques des dĂ©bits sont dĂ©finies au moyen de l’analyse en composantes principales appliquĂ©e sur les variables hydrologiques. Contrairement aux autres approches, l’approche Ă©co-gĂ©ographique tient compte de toutes les caractĂ©ristiques des dĂ©bits dans la rĂ©gionalisation conformĂ©ment au concept de « rĂ©gime des dĂ©bits naturels ». Quant Ă  l’échelle d’analyse, Ă  l’instar de l’approche Ă©cologique, la nouvelle mĂ©thode s’applique aussi Ă  toutes les Ă©chelles d’analyse (annuelle, mensuelle et journaliĂšre) mais en les considĂ©rant sĂ©parĂ©ment afin de tenir compte de toutes les caractĂ©ristiques de dĂ©bits dans la rĂ©gionalisation. Enfin, la finalitĂ© de la nouvelle mĂ©thode est de pouvoir dĂ©terminer les facteurs de variabilitĂ© spatiale des caractĂ©ristiques de dĂ©bits (et non des variables hydrologiques) au moyen de l’analyse canonique des corrĂ©lations, notamment afin d’assurer une gestion durable des ressources hydriques dans un contexte de changement de l’environnement. Nous avons appliquĂ© cette nouvelle mĂ©thode aux dĂ©bits moyens annuels au QuĂ©bec.Flow regionalization has been the subject of numerous hydrologic studies. However, despite the development of regionalization methods, there are still differences in the approaches used amongst hydrologists on the one hand, and between hydrologists and experts in other fields (aquatic ecology and physical geography) on the other hand. Those differences relate to five aspects of the regionalization process: the choice of hydrologic variables, station grouping methods to produce homogeneous hydrologic regions, the choice of appropriate statistical laws to estimate quantiles for non-gauged or partially-gauged sites, the scale of flow analysis, and the ultimate purpose of the regionalization exercise. Depending on the choice of hydrologic variables, the scale of analysis and their ultimate purpose, regionalization studies may thus be divided according to two distinct approaches: the hydrologic approach and the ecologic approach.The ultimate purpose of the hydrologic approach is to estimate flows at non-gauged or partially-gauged sites. For this reason, it has been primarily concerned with methods that allow the grouping of stations into homogeneous hydrologic regions and with the choice of statistical laws to estimate quantiles for non-gauged or partially-gauged sites. However, despite its undeniable interest from a practical point of view, this approach does not address the concerns of ecologists and geographers for three reasons: 1) the choice of hydrologic variables used for regionalization is not based on a scientific concept (this choice is arbitrary, and the variables selected do not constrain all the flow characteristics); 2) the ultimate purpose of the regionalization exercise is limited to estimating flows and is of limited interest to geographers and ecologists; 3) regionalization is performed at a daily scale, without taking into account other scales.To make up for these limitations, ecologists have recently proposed regionalization based on the “natural flow regime” concept (the ecologic approach), which allows all fundamental flow characteristics (magnitude, frequency, duration, timing of occurrence and variability) to be taken into account. The rationale for considering all flow characteristics is that each characteristic has an effect on the behaviour of river ecosystems. Hence, regionalization based on the ecologic approach relies on a large number of hydrologic variables that define the fundamental flow characteristics. Rather than being arbitrary, the choice of variable is based on this new paradigm. Regionalization using the ecologic approach considers all time scales, and its ultimate purpose is to account for differences in the structure and biological composition of aquatic ecosystems.However, one of the limitations of studies based on this approach is that, no matter how numerous they are, the variables used for regionalization do not constrain all flow characteristics, as required by the natural flow regime concept, so that application of this concept is incomplete. In addition, simultaneous analysis of all time scales does not allow consideration of all flow characteristics. To overcome these limitations, we propose a new regionalization approach based on the natural flow regime concept, an “ecogeographic” approach that differs from the ecologic approach in three ways. First, the proposed method is based on the use of flow characteristics rather than hydrologic variables. The reason for this is that there are an infinite number of hydrologic variables to define the five fundamental characteristics, making it impossible to account for all of them in the regionalization process. In contrast, since the number of fundamental flow characteristics is limited, they can all be taken into account, consistent with the “natural flow regime” requirements. Second, the ultimate purpose of the proposed regionalization method is to identify the physiographic and climatic factors that explain the spatial variability of these fundamental characteristics. To achieve this goal, it is necessary to analyze the different time scales (daily, monthly, annual) separately given the fact that it is impossible to constrain the effect of these various physiographic and climatic factors at all time scales. Indeed, some factors may show an effect at some time scales and not at others. This ultimate purpose addresses the concerns of geographers interested in explaining the spatial variability of such phenomena, among other things. Finally, separate analysis of the various time scales makes it possible to define all flow characteristics linked to a given time scale. As such, application of the “natural flow regime” concept to regionalization is complete.Application of the ecogeographical method involves four separate steps: 1) the definition of the flow characteristics for the hydrologic series of interest; 2) the determination of minor and major characteristics using principal component analysis, where a “major” flow characteristic is defined as one which meets the following criterion: TVE ≄ (100% / N), where N is the total number of characteristics that define the analyzed hydrologic series and TVE is the total variance explained; 3) the grouping of stations in homogeneous hydrologic regions based on factorial scores. Homogeneous hydrologic regions are divided in two types based on the presence or absence of stations: effective homogeneous regions contain stations whereas fictive homogenous regions do not; 4) the determination of the factors that affect the spatial variability of flow characteristics. This is achieved using canonical correlation analysis, an approach that we have applied to average annual flows in Quebec watersheds

    Modes de variabilité temporelle des débits moyens annuels et leurs liens avec les indices climatiques au québec (canada)

    Get PDF
    La variabilitĂ© interannuelle des dĂ©bits moyens annuels (1970-1995) de 70 stations hydrologiques rĂ©parties dans les trois grands bassins versants du QuĂ©bec a Ă©tĂ© Ă©tudiĂ©e au moyen d’une analyse en composantes principales et d’un lissage par une moyenne mobile simple. Cinq modes de variabilitĂ© ont Ă©tĂ© ainsi identifiĂ©s selon la succession des phases de baisse et de hausse des dĂ©bits. Les trois premiers modes caractĂ©risent les riviĂšres du bassin du fleuve Saint-Laurent. Le premier mode, qui regroupe le plus grand nombre de stations situĂ©es sur les deux rives du fleuve, montre une pĂ©riode de baisse des dĂ©bits (avant 1980), suivie d’une longue phase de hausse modĂ©rĂ©e des dĂ©bits. Ce mode est positivement corrĂ©lĂ© Ă  l’oscillation australe. Le second mode, qui regroupe les riviĂšres situĂ©es au nord de la rive sud du Saint-Laurent, est caractĂ©risĂ© par des dĂ©bits qui diminuent entre 1975 et 1985, puis augmentent. Il n’est corrĂ©lĂ© Ă  aucun indice climatique. Les stations qui forment le troisiĂšme mode sont principalement localisĂ©es en rive nord. Ce mode est caractĂ©risĂ© par deux phases de hausse sĂ©parĂ©es par une phase de baisse des dĂ©bits. Certaines stations de ce mode sont corrĂ©lĂ©es aux oscillations arctique, australe et nord atlantique. Les deux derniers modes caractĂ©risent les riviĂšres situĂ©es au nord du 55e parallĂšle, dans les bassins de la Baie d’Ungava et de la Baie d’Hudson. Ces modes montrent une phase de diminution continue depuis la seconde pĂ©riode des annĂ©es 1970 ou une phase de diminution prĂ©cĂ©dĂ©e d’une longue phase normale des dĂ©bits. Ils sont nĂ©gativement corrĂ©lĂ©s Ă  l’oscillation arctique et nord atlantique. Il se dĂ©gage de cette Ă©tude que la variabilitĂ© interannuelle des dĂ©bits n’est pas synchrone Ă  l’intĂ©rieur du bassin du fleuve Saint-Laurent.The temporal variability of the annual average discharges (1970-1995) of 70 hydrological stations distributed among QuĂ©bec three main watersheds was studied by principal component analysis and smoothing by a simple moving average. Five temporal variability modes were thus identified according to the succession of decreasing and increasing discharge phases. The first three modes characterize rivers of the St. Lawrence watershed. The first mode, which includes the greatest number of stations located on both shores of the river, shows a period of decreasing discharges (before 1980), followed by a long phase of moderately increasing discharges. This mode is positively correlated with the Southern Oscillation. The second mode, which includes rivers located in the northern part of the south shore of the St. Lawrence, is characterized by discharges decreasing between 1975 and 1985 and then increasing. It is not correlated with any climate index. The stations forming the third mode are mainly located on the north shore. This mode is characterized by two increasing phases separated by a decreasing discharge phase. Some stations of this mode are correlated with the Arctic, Southern and North Atlantic Oscillations. The last two modes characterize rivers located north of the 55th parallel, in the Ungava Bay and Hudson Bay watersheds. These modes show a continuously decreasing phase since the second period of the 1970s or a decreasing phase preceded by a long normal discharge phase. They are negatively correlated with the Arctic and North Atlantic Oscillations. This study shows that the interannual discharge variability is not synchronous within the St. Lawrence River watershed

    Relationship between Water Levels in the North American Great Lakes and Climate Indices

    Get PDF
    The goal of this study is to look at how the interconnection of five North American Great Lakes affects the relationship between climate indices and mean annual and extreme daily water levels during the period from 1918 to 2012, and how human activity impacts the dependence between these two variables. Analysis of correlation revealed the existence of a negative correlation between water levels in Lakes Superior, Michigan–Huron and Erie, and the Atlantic Multidecadal Oscillation (AMO) climate index, although this correlation is not observed at the daily scale for Lake Superior. Water levels in Lake Ontario are negatively correlated with Pacific Decadal Oscillation (PDO). The temporal evolution of the dependence between water levels and climate indices is characterized by breaks interpreted to result from variations in the amount of precipitation probably linked with an AMO phase change in the Lakes Superior, Michigan–Huron, and Erie watersheds. In the case of Lake Ontario, such breaks in dependence are thought to be related to water level regulation in this lake resulting from the digging of the St. Lawrence Seaway
    • 

    corecore