15 research outputs found

    High Energy Physics in Africa, Latin America and other developing regions

    Full text link
    We summarize the current status of high energy physics (HEP) in Africa, Latin America, and other developing regionsComment: 6 pages, 2 figure

    Lifestyle and personal wellness in particle physics research activities

    Full text link
    Finding a balance between professional responsibilities and personal priorities is a great challenge of contemporary life and particularly within the HEPAC community. Failure to achieve a proper balance often leads to different degrees of mental and physical issues and affects work performance. In this paper, we discuss some of the main causes that lead to the imbalance between work and personal life in our academic field. We present some recommendations in order to establish mechanisms to create a healthier and more equitable work environment, for the different members of our community at the different levels of their careers

    A model of COVID-19 pandemic evolution in African countries

    Full text link
    We studied the COVID-19 pandemic evolution in selected African countries. For each country considered, we modeled simultaneously the data of the active, recovered and death cases. In this study, we used a year of data since the first cases were reported. We estimated the time-dependent basic reproduction numbers, R0R_0, and the fractions of infected but unaffected populations, to offer insights into containment and vaccine strategies in African countries. We found that R04R_0\leq 4 at the start of the pandemic but has since fallen to R01R_0 \sim 1. The unaffected fractions of the populations studied vary between 1101-10\% of the recovered cases.Comment: 27 pages, 9 figures and 1 tabl

    Report of the 2021 U.S. Community Study on the Future of Particle Physics (Snowmass 2021) Summary Chapter

    Full text link
    The 2021-22 High-Energy Physics Community Planning Exercise (a.k.a. ``Snowmass 2021'') was organized by the Division of Particles and Fields of the American Physical Society. Snowmass 2021 was a scientific study that provided an opportunity for the entire U.S. particle physics community, along with its international partners, to identify the most important scientific questions in High Energy Physics for the following decade, with an eye to the decade after that, and the experiments, facilities, infrastructure, and R&D needed to pursue them. This Snowmass summary report synthesizes the lessons learned and the main conclusions of the Community Planning Exercise as a whole and presents a community-informed synopsis of U.S. particle physics at the beginning of 2023. This document, along with the Snowmass reports from the various subfields, will provide input to the 2023 Particle Physics Project Prioritization Panel (P5) subpanel of the U.S. High-Energy Physics Advisory Panel (HEPAP), and will help to guide and inform the activity of the U.S. particle physics community during the next decade and beyond.Comment: 75 pages, 3 figures, 2 tables. This is the first chapter and summary of the full report of the Snowmass 2021 Workshop. This version fixes an important omission from Table 2, adds two references that were not available at the time of the original version, fixes a minor few typos, and adds a small amount of material to section 1.1.

    Search for the lepton flavor violating decay A^0/H^0 --> tau^{+/-} mu^{+/-} at hadron colliders

    Full text link
    In the two Higgs doublet model type III and in several other extensions of the Standard Model, there are no discrete symmetries that suppress flavor changing couplings at tree level. The experimental observation of the nu_mu -- nu_tau flavor oscillation may suggest the non-conservation of lepton number. This would lead to the decay of the type A^0/H^0 --> tau^{+/-} mu^{+/-}. We determine the present low energy limit on lepton flavor violating (LFV) couplings from the muon g-2 measurement and discuss the prospects for detecting lepton flavor violating decays at the TeVatron and at the Large Hadron Collider. The achievable bounds on the LFV coupling parameter lambda_{tau mu} are presented.Comment: 19 pages, 21 figures. Updated version takes into account the recent results on the muon g-2 measurements. Submitted to Phys. Rev. D. Added minor corrections from a refere

    The African School of Fundamental Physics and Applications Activity Report 2019-2021

    No full text
    The sixth edition of the African School of Fundamental and Applied Physics (ASP) was planned for Morocco in July 2020 and was referred to as ASP2020. Preparations were at an advanced stage when ASP2020 was postponed because of the COVID-19 pandemic. The three-week event was restructured into two activities in 2021 -- an online event on July 19-30, 2021 and a hybrid event on December 12-18, 2021 -- and was renamed ASP2021. At the beginning of the COVID-19 pandemic, an online lecture series was integrated into the ASP activities. The ASP mentorship program, which consists of online engagements between lecturers and assigned mentees, continued in this way. ASP alumni studied one year of COVID-19 data of ten African countries to offer insights into pandemic containment measures. In this note, we report on ASP activities since the last in-person edition of ASP in 2018 in Namibia

    Software Sustainability & High Energy Physics

    No full text
    New facilities of the 2020s, such as the High Luminosity Large Hadron Collider (HL-LHC), will be relevant through at least the 2030s. This means that their software efforts and those that are used to analyze their data need to consider sustainability to enable their adaptability to new challenges, longevity, and efficiency, over at least this period. This will help ensure that this software will be easier to develop and maintain, that it remains available in the future on new platforms, that it meets new needs, and that it is as reusable as possible. This report discusses a virtual half-day workshop on "Software Sustainability and High Energy Physics" that aimed 1) to bring together experts from HEP as well as those from outside to share their experiences and practices, and 2) to articulate a vision that helps the Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP) to create a work plan to implement elements of software sustainability. Software sustainability practices could lead to new collaborations, including elements of HEP software being directly used outside the field, and, as has happened more frequently in recent years, to HEP developers contributing to software developed outside the field rather than reinventing it. A focus on and skills related to sustainable software will give HEP software developers an important skill that is essential to careers in the realm of software, inside or outside HEP. The report closes with recommendations to improve software sustainability in HEP, aimed at the HEP community via IRIS-HEP and the HEP Software Foundation (HSF)
    corecore