12 research outputs found
A basic probability assignment methodology for unsupervised wireless intrusion detection
YesThe broadcast nature of wireless local area networks has made them prone to several types
of wireless injection attacks, such as Man-in-the-Middle (MitM) at the physical layer, deauthentication, and
rogue access point attacks. The implementation of novel intrusion detection systems (IDSs) is fundamental to
provide stronger protection against these wireless injection attacks. Since most attacks manifest themselves
through different metrics, current IDSs should leverage a cross-layer approach to help toward improving the
detection accuracy. The data fusion technique based on the DempsterâShafer (D-S) theory has been proven
to be an efficient technique to implement the cross-layer metric approach. However, the dynamic generation
of the basic probability assignment (BPA) values used by D-S is still an open research problem. In this
paper, we propose a novel unsupervised methodology to dynamically generate the BPA values, based on
both the Gaussian and exponential probability density functions, the categorical probability mass function,
and the local reachability density. Then, D-S is used to fuse the BPA values to classify whether the Wi-Fi
frame is normal (i.e., non-malicious) or malicious. The proposed methodology provides 100% true positive
rate (TPR) and 4.23% false positive rate (FPR) for the MitM attack and 100% TPR and 2.44% FPR for the
deauthentication attack, which confirm the efficiency of the dynamic BPA generation methodology.Gulf Science, Innovation and Knowledge Economy Programme of the U.K. Government under UK-Gulf Institutional Link Grant IL 279339985 and in part by the Engineering and Physical Sciences Research Council (EPSRC), U.K., under Grant EP/R006385/1
Hidden Markov models and alert correlations for the prediction of advanced persistent threats
YesCyber security has become a matter of a global interest, and several attacks target industrial companies and governmental organizations. The advanced persistent threats (APTs) have emerged as a new and complex version of multi-stage attacks (MSAs), targeting selected companies and organizations. Current APT detection systems focus on raising the detection alerts rather than predicting APTs. Forecasting the APT stages not only reveals the APT life cycle in its early stages but also helps to understand the attacker's strategies and aims. This paper proposes a novel intrusion detection system for APT detection and prediction. This system undergoes two main phases; the first one achieves the attack scenario reconstruction. This phase has a correlation framework to link the elementary alerts that belong to the same APT campaign. The correlation is based on matching the attributes of the elementary alerts that are generated over a configurable time window. The second phase of the proposed system is the attack decoding. This phase utilizes the hidden Markov model (HMM) to determine the most likely sequence of APT stages for a given sequence of correlated alerts. Moreover, a prediction algorithm is developed to predict the next step of the APT campaign after computing the probability of each APT stage to be the next step of the attacker. The proposed approach estimates the sequence of APT stages with a prediction accuracy of at least 91.80%. In addition, it predicts the next step of the APT campaign with an accuracy of 66.50%, 92.70%, and 100% based on two, three, and four correlated alerts, respectively.The Gulf Science, Innovation and Knowledge Economy Programme of the U.K. Government under UK-Gulf Institutional Link Grant IL 279339985 and in part by the Engineering and Physical Sciences Research Council (EPSRC), U.K., under Grant EP/R006385/1
Addressing Multi-Stage Attacks Using Expert Knowledge and Contextual Information
New challenges in the cyber-threat domain are driven by tactical and meticulously designed Multi-Stage Attacks (MSAs). Current state-of-the-art (SOTA) Intrusion Detection Systems (IDSs) are developed to detect individual attacks through the use of signatures or identifying manifested anomalies in the network environment. However, an MSA differs from traditional one-off network attacks as it requires a set of sequential stages, whereby each stage may not be malicious when manifested individually, therefore, potentially be underestimated by current IDSs. This work proposes a new approach towards addressing this challenging type of cyber-attacks by employing external sources of information, beyond the conventional use of signatures and monitored network data. In particular, both expert knowledge and contextual information in the form of Pattern-of-Life (PoL) of the network are shown to be influential in giving an advantage against SOTA techniques. We compare our proposed anomaly-based IDS, based on decision making powered by the Dempster-Shafer (D-S) Theory and Fuzzy Cognitive Maps (FCMs), against Snort, one of the most widely deployed IDS in the world. Our results verify that the use of contextual information improves the efficiency of our IDS by enhancing the Detection Rate (DR) of MSAs by almost 50%
Countermeasures against Adversarial Examples in Radio Signal Classification
Deep learning algorithms have been shown to be powerful in many communication network design problems, including that in automatic modulation classification. However, they are vulnerable to carefully crafted attacks called adversarial examples. Hence, the reliance of wireless networks on deep learning algorithms poses a serious threat to the security and operation of wireless networks. In this letter, we propose for the first time a countermeasure against adversarial examples in modulation classification. Our countermeasure is based on a neural rejection technique, augmented by label smoothing and Gaussian noise injection, that allows to detect and reject adversarial examples with high accuracy. Our results demonstrate that the proposed countermeasure can protect deep-learning based modulation classification systems against adversarial examples
Attention-Based Adversarial Robust Distillation in Radio Signal Classifications for Low-Power IoT Devices
Due to great success of transformers in many applications, such as natural language processing and computer vision, transformers have been successfully applied in automatic modulation classification. We have shown that transformer-based radio signal classification is vulnerable to imperceptible and carefully crafted attacks called adversarial examples. Therefore, we propose a defense system against adversarial examples in transformer-based modulation classifications. Considering the need for computationally efficient architecture particularly for Internet of Things (IoT)-based applications or operation of devices in an environment where power supply is limited, we propose a compact transformer for modulation classification. The advantages of robust training such as adversarial training in transformers may not be attainable in compact transformers. By demonstrating this, we propose a novel compact transformer that can enhance robustness in the presence of adversarial attacks. The new method is aimed at transferring the adversarial attention map from the robustly trained large transformer to a compact transformer. The proposed method outperforms the state-of-the-art techniques for the considered white-box scenarios, including the fast gradient method and projected gradient descent attacks. We have provided reasoning of the underlying working mechanisms and investigated the transferability of the adversarial examples between different architectures. The proposed method has the potential to protect the transformer from the transferability of adversarial examples
Denial of service detection using dynamic time warping
YesWith the rapid growth of security threats in computer networks, the need for developing efficient securityâwarning systems is substantially increasing. Distributed denialâofâservice (DDoS) and DoS attacks are still among the most effective and dreadful attacks that require robust detection. In this work, we propose a new method to detect TCP DoS/DDoS attacks. Since analyzing network traffic is a promising approach, our proposed method utilizes network traffic by decomposing the TCP traffic into control and data planes and exploiting the dynamic time warping (DTW) algorithm for aligning these two planes with respect to the minimum Euclidean distance. By demonstrating that the distance between the control and data planes is considerably small for benign traffic, we exploit this characteristic for detecting attacks as outliers. An adaptive thresholding scheme is implemented by adjusting the value of the threshold in accordance with the local statistics of the median absolute deviation (MAD) of the distances between the two planes. We demonstrate the efficacy of the proposed method for detecting DoS/DDoS attacks by analyzing traffic data obtained from publicly available datasets.The Deanship of Scientific Research, King Saud University. The Gulf Science, Innovation, and Knowledge Economy Programme of the U.K. Governmen