1,810 research outputs found
Freshly ionized matter around the final Helium shell flash object V4334 Sgr (Sakurai's object)
We report on the discovery of recently ionized hydrogen-deficient gas in the
immediate circumstellar environment of the final helium shell flash star V4334
Sgr (Sakurai's object). On spectra obtained with FORS2 multi-object
spectroscopy we have found spatially extended (about 2") emission from [N II],
[O I], [O II] and very faint Halpha and [S II]. In the [N II] (ll6548,83) lines
we have identified two components located at velocities -350 +/-50 and +200
+/-50 km/s, relative to V4334 Sgr itself. The full width of the [N II] l6583
feature at zero intensity corresponds to a velocity spread of about 1500 km/s.
Based on the available data it is not possible to conclusively determine the
mechanism of ionization. Both photo-ionization, from a rapidly evolving central
star, and shock excitation, as the result of the collision of the fast ouflows
with slower circumstellar matter, could account for the observed lines. The
central star is still hidden behind strong dust absorption, since only a faint
highly reddened continuum is apparent in the spectra. Theory states that it
will become hotter and will retrace its post-asymptotic giant branch evolution
towards the planetary nebula domain. Our detection of the ionized ejecta from
the very late helium shell flash marks the beginning of a new phase in this
star's amazingly rapid evolution.Comment: 11 pages, 2 figures. Accepted by ApJ
The discrepancy in G-band contrast: Where is the quiet Sun?
We compare the rms contrast in observed speckle reconstructed G-band images
with synthetic filtergrams computed from two magneto-hydrodynamic simulation
snapshots. The observations consist of 103 bursts of 80 frames each taken at
the Dunn Solar Telescope (DST), sampled at twice the diffraction limit of the
telescope. The speckle reconstructions account for the performance of the
Adaptive Optics (AO) system at the DST to supply reliable photometry. We find a
considerable discrepancy in the observed rms contrast of 14.1% for the best
reconstructed images, and the synthetic rms contrast of 21.5% in a simulation
snapshot thought to be representative of the quiet Sun. The areas of features
in the synthetic filtergrams that have positive or negative contrast beyond the
minimum and maximum values in the reconstructed images have spatial scales that
should be resolved. This leads us to conclude that there are fundamental
differences in the rms G-band contrast between observed and computed
filtergrams. On the basis of the substantially reduced granular contrast of
16.3% in the synthetic plage filtergram we speculate that the quiet-Sun may
contain more weak magnetic field than previously thought.Comment: 16 pages, 8 figure
Observational signatures of lithium depletion in the metal-poor globular cluster NGC6397
The "stellar" solution to the cosmological lithium problem proposes that
surface depletion of lithium in low-mass, metal-poor stars can reconcile the
lower abundances found for Galactic halo stars with the primordial prediction.
Globular clusters are ideal environments for studies of the surface evolution
of lithium, with large number statistics possible to obtain for main sequence
stars as well as giants. We discuss the Li abundances measured for >450 stars
in the globular cluster NGC6397, focusing on the evidence for lithium depletion
and especially highlighting how the inferred abundances and interpretations are
affected by early cluster self-enrichment and systematic uncertainties in the
effective temperature determination.Comment: 6 pages, 2 figures, conference proceedings for IAU symposium 26
Line formation in solar granulation VI. [C I], C I, CH and C2 lines and the photospheric C abundance
The solar photospheric carbon abundance has been determined from [C I], C I,
CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means
of a time-dependent, 3D, hydrodynamical model of the solar atmosphere.
Departures from LTE have been considered for the C I lines. These turned out to
be of increasing importance for stronger lines and are crucial to remove a
trend in LTE abundances with the strengths of the lines. Very gratifying
agreement is found among all the atomic and molecular abundance diagnostics in
spite of their widely different line formation sensitivities. The mean of the
solar carbon abundance based on the four primary abundance indicators ([C I], C
I, CH vibration-rotation, C_2 Swan) is log C = 8.39 +/- 0.05, including our
best estimate of possible systematic errors. Consistent results also come from
the CH electronic lines, which we have relegated to a supporting role due to
their sensitivity to the line broadening. The new 3D based solar C abundance is
significantly lower than previously estimated in studies using 1D model
atmospheres.Comment: Accepted for A&A, 13 page
Line formation in solar granulation: I. Fe line shapes, shifts and asymmetries
Realistic ab-initio 3D, radiative-hydrodynamical convection simulations of
the solar granulation have been applied to FeI and FeII line formation. In
contrast to classical analyses based on hydrostatic 1D model atmospheres the
procedure contains no adjustable free parameters but the treatment of the
numerical viscosity in the construction of the 3D, time-dependent,
inhomogeneous model atmosphere and the elemental abundance in the 3D spectral
synthesis. However, the numerical viscosity is introduced purely for numerical
stability purposes and is determined from standard hydrodynamical test cases
with no adjustments allowed to improve the agreement with the observational
constraints from the solar granulation. The non-thermal line broadening is
mainly provided by the Doppler shifts arising from the convective flows in the
solar photosphere and the solar oscillations. The almost perfect agreement
between the predicted temporally and spatially averaged line profiles for weak
Fe lines with the observed profiles and the absence of trends in derived
abundances with line strengths, seem to imply that the micro- and
macroturbulence concepts are obsolete in these 3D analyses. Furthermore, the
theoretical line asymmetries and shifts show a very satisfactory agreement with
observations with an accuracy of typically 50-100 m/s on an absolute velocity
scale. The remaining minor discrepancies point to how the convection
simulations can be refined further.Comment: Accepted for A&
Granulation across the HR diagram
We have obtained ultra-high quality spectra (R=180,000; S/N>300) with
unprecedented wavelength coverage (4400 to 7400 A) for a number of stars
covering most of the HR diagram in order to test the predictions of models of
stellar surface convection. Line bisectors and core wavelength shifts are both
measured and modeled, allowing us to validate and/or reveal the limitations of
state-of-the-art hydrodynamic model atmospheres of different stellar
parameters. We show the status of our project and preliminary results.Comment: 4 pages, 3 figures; proceedings article for Joint Discussion 10 at
the IAU General Assembly, Rio de Janeiro, Brazil, August 200
Accounting for Convective Blue-Shifts in the Determination of Absolute Stellar Radial Velocities
For late-type non-active stars, gravitational redshifts and convective
blueshifts are the main source of biases in the determination of radial
velocities. If ignored, these effects can introduce systematic errors of the
order of ~ 0.5 km/s. We demonstrate that three-dimensional hydrodynamical
simulations of solar surface convection can be used to predict the convective
blue-shifts of weak spectral lines in solar-like stars to ~ 0.070 km/s. Using
accurate trigonometric parallaxes and stellar evolution models, the
gravitational redshifts can be constrained with a similar uncertainty, leading
to absolute radial velocities accurate to better than ~ 0.1 km/s.Comment: To appear in the proceedings of the Joint Discussion 10, IAU General
Assembly, Rio de Janeiro, August 10-11, 200
- …