881 research outputs found

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    Get PDF
    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.Comment: 20 pages, LaTex2

    C^2/Z_n Fractional branes and Monodromy

    Full text link
    We construct geometric representatives for the C^2/Z_n fractional branes in terms of branes wrapping certain exceptional cycles of the resolution. In the process we use large radius and conifold-type monodromies, and also check some of the orbifold quantum symmetries. We find the explicit Seiberg-duality which connects our fractional branes to the ones given by the McKay correspondence. We also comment on the Harvey-Moore BPS algebras.Comment: 34 pages, v1 identical to v2, v3: typos fixed, discussion of Harvey-Moore BPS algebras update

    Twistfield Perturbations of Vertex Operators in the Z_2-Orbifold Model

    Get PDF
    We apply Kadanoff's theory of marginal deformations of conformal field theories to twistfield deformations of Z_2 orbifold models in K3 moduli space. These deformations lead away from the Z_2 orbifold sub-moduli-space and hence help to explore conformal field theories which have not yet been understood. In particular, we calculate the deformation of the conformal dimensions of vertex operators for p^2<1 in second order perturbation theory.Comment: Latex2e, 19 pages, 1 figur

    Quantum symmetries and exceptional collections

    Full text link
    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity

    Partition Functions, Duality, and the Tube Metric

    Get PDF
    The partition function of type IIA and B strings on R^6xK3, in the T^4/Z_2 orbifold limit, is explicitly computed as a modular invariant sum over spin strutures required by perturbative unitarity in order to extend the analysis to include type II strings on R^6 x W4, where W4 is associated with the tube metric conformal field theory, given by the degrees of freedom transverse to the Neveu-Schwarz fivebrane solution. This generates partition functions and perturbative spectra of string theories in six space-time dimensions, associated with the modular invariants of the level k affine SU(2) Kac-Moody algebra. These theories provide a conformal field theory (i.e. perturbative) probe of non-perturbative (fivebrane) vacua. We contrast them with theories whose N=(4,4) sigma-model action contains n_H=k+2 hypermultiplets as well as vector supermultiplets, and where k is the level just mentioned. In Appendix B we also give a D=6, N=(1,1) `free fermion' string model which has a different moduli space of vacua from the 81 parameter space relevant to the above examples.Comment: 24 pages, TE

    Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces

    Full text link
    Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.Comment: 59 pages. Some changes in the references, a few minor points have been clarifie

    Gauging and symplectic blowing up in nonlinear sigma-models: I. point singularities

    Full text link
    In this paper a two dimensional non-linear sigma model with a general symplectic manifold with isometry as target space is used to study symplectic blowing up of a point singularity on the zero level set of the moment map associated with a quasi-free Hamiltonian action. We discuss in general the relation between symplectic reduction and gauging of the symplectic isometries of the sigma model action. In the case of singular reduction, gauging has the same effect as blowing up the singular point by a small amount. Using the exponential mapping of the underlying metric, we are able to construct symplectic diffeomorphisms needed to glue the blow-up to the global reduced space which is regular, thus providing a transition from one symplectic sigma model to another one free of singularities.Comment: 32 pages, LaTex, THEP 93/24 (corrected and expanded(about 5 pages) version

    Calabi-Yau Duals of Torus Orientifolds

    Full text link
    We study a duality that relates the T^6/Z_2 orientifold with N=2 flux to standard fluxless Calabi-Yau compactifications of type IIA string theory. Using the duality map, we show that the Calabi-Yau manifolds that arise are abelian surface (T^4) fibrations over P^1. We compute a variety of properties of these threefolds, including Hodge numbers, intersection numbers, discrete isometries, and H_1(X,Z). In addition, we show that S-duality in the orientifold description becomes T-duality of the abelian surface fibers in the dual Calabi-Yau description. The analysis is facilitated by the existence of an explicit Calabi-Yau metric on an open subset of the geometry that becomes an arbitrarily good approximation to the actual metric (at most points) in the limit that the fiber is much smaller than the base.Comment: 39 pages; uses harvmac.tex, amssym.tex; v4: minor correction

    Heterotic-Type II duality in the hypermultiplet sector

    Full text link
    We revisit the duality between heterotic string theory compactified on K3 x T^2 and type IIA compactified on a Calabi-Yau threefold X in the hypermultiplet sector. We derive an explicit map between the field variables of the respective moduli spaces at the level of the classical effective actions. We determine the parametrization of the K3 moduli space consistent with the Ferrara-Sabharwal form. From the expression of the holomorphic prepotential we are led to conjecture that both X and its mirror must be K3 fibrations in order for the type IIA theory to have an heterotic dual. We then focus on the region of the moduli space where the metric is expressed in terms of a prepotential on both sides of the duality. Applying the duality we derive the heterotic hypermultiplet metric for a gauge bundle which is reduced to 24 point-like instantons. This result is confirmed by using the duality between the heterotic theory on T^3 and M-theory on K3. We finally study the hyper-Kaehler metric on the moduli space of an SU(2) bundle on K3.Comment: 27 pages; references added, typos correcte
    • …
    corecore