139 research outputs found

    Gascons in Italy, 1494 - 1515

    Get PDF

    Spitzer IRAC and MIPS Imaging of Clusters and Outflows in 9 High-mass Star Forming Regions

    Full text link
    We present Spitzer Space Telescope IRAC and MIPS observations toward a sample of nine high-mass star forming regions at a distance of around 2 kpc. Based on IRAC and MIPS 24 μ\mum photometric results and 2MASS JHKs data, we carry out a census of young stellar objects (YSOs) in a 5' by 5' field toward each region. Toward seven out of the nine regions, we detect parsec sized clusters with around 20 YSOs surrounded by a more extended and sparse distribution of young stars and protostars. For the other two regions, IRAS 20126+4104 and IRAS 22172+5549, the former has the lowest number of YSOs in the sample and shows no obvious cluster, and the latter appears to be part of a larger, potentially more evolved cluster. The deep IRAC imaging reveals at least twelve outflows in eight out of the nine regions, with nine outflows prominent in the 4.5 μ\mum band most probably attributed to shocked H2_2 emission, two outflows dominated by scattered light in the 3.6 and 4.5 μ\mum bands, and one outflow standing out from its hydrocarbon emission in the 8.0 μ\mum band. In comparison with previous ground-based observations, our IRAC observations reveal new outflow structures in five regions. The dramatically different morphologies of detected outflows can be tentatively interpreted in terms of possible evolution of massive outflows. The driving sources of these outflows are deeply embedded in dense dusty cores revealed by previous millimeter interferometric observations. We detect infrared counterparts of these dusty cores in the IRAC or MIPS 24 μ\mum bands. Reflection nebulae dominated by the emission from UV heated hydrocarbons in the 8 μ\mum band can be found in most regions and they may imply the presence of young B stars.Comment: 76 pages, 25 figures and 5 tables, ApJ in press, a full resolution version available at http://www.cfa.harvard.edu/~kqiu/spitzer.pd

    The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S

    Full text link
    Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.Comment: 14 pages, 10 figures (5 color), accepted for publication in Ap

    Chandra Study of Young Stellar Objects in the NGC 1333 Star-forming Cloud

    Get PDF
    NGC 1333, a highly active star formation region within the Perseus molecular cloud complex, has been observed with the ACIS-I detector on board the Chandra X-ray Observatory. In our image with a sensitivity limit of ~ 1e28 erg/s, we detect 127 X-ray sources, of which, 95 are known cluster members. The X-ray luminosity function of the discovered YSO population spans a range of 1e28-3.2e31 erg/s in the 0.5-8 keV band. Comparison with K-band source counts indicates that we detect all of the known cluster members with K < 12, and about half of members with K > 12. We detect seven X-ray emitting YSOs which drive optically visible jets as well as one deeply embedded object that has not been detected in near-IR observations. The presence or absence of an outflows does not appear to produce any difference in X-ray properties of YSOs. We also find no systematic differences in X-ray luminosity distributions between two complete subsamples of CTTs and WTTs. That suggests that there is no difference in the astrophysical mechanism of WTT and CTT X-ray emission production. Additional results include: the X-ray emission from two late-B stars which illuminate the reflection nebula originates from unresolved late-type companions; two T Tauri stars are discovered as previously unknown components of visual binaries; and the X-ray counterpart of SVS 16 has the column density much lower than that expected from near-IR photometry and thus its X-ray luminosity is not anomalously high, as has been previously suggested.Comment: 53 pages, 14 figures, 3 tables. To appear in the Astrophysical Journal; scheduled for 2002, ApJ, 575 (August 10th). High quality copy available at ftp://ftp.astro.psu.edu/pub/gkosta/ngc1333

    Chandra Observations of High Mass Young Stellar Objects in the Monoceros R2 molecular cloud

    Get PDF
    We observed the Monoceros R2 molecular cloud with the ACIS-I array onboard the Chandra X-ray Observatory. From the central 3.2' x 3.2' region, we detect 154 sources above the detection limit of ~5x10^-16 ergs s^-1 cm^-2 with a 100 ks-exposure. About 85% of the X-ray sources are identified with an infrared counterpart, including four high mass stars in zero age main sequence (ZAMS) and/or pre main sequence (PMS) phase. The X-ray spectra of the high mass ZAMS and PMS stars are represented with a thin thermal plasma model of a temperature above 2 keV. The X-rays are time-variable and exhibit rapid flares. These high temperature plasma and flaring activity are similar to those seen in low mass PMS stars and contrary to the behavior observed in high mass main sequence stars. The X-ray luminosity increases as the intrinsic K-band flux increases. However, the X-ray luminosity saturates at a level of ~10^31 ergs s^-1. We conclude that high mass ZAMS and PMS emit X-rays, possibly due to the magnetic activity like those of low mass stars.Comment: 12 pages, 10 figures, accepted for publication in Ap

    High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47

    Full text link
    We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features present in these nebulae. The data suggest that NGC 6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200 km/s. The bright inner ring of the nebula is interpreted to be the "equatorial" density enhancement. It contains a number of low-ionization knots and outward tails that we ascribe to dynamical instabilities leading to fragmentation of the ring or transient density enhancements due to the interaction of the ionization front with previous density fluctuations in the ISM. The lobes show a pronounced point-symmetric morphology and two peculiar low-ionization filaments whose nature remains unclear. The most notable characteristic of He 2-186 is the presence of two high-velocity (higher than 135 km/s) knots from which an S-shaped lane of emission departs toward the central star. K 4-47 is composed of a compact core and two high-velocity, low-ionization blobs. We interpret the substantial broadening of line emission from the blobs as a signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman (1987), we derive a shock velocity of 150 km/s and a mild inclination of the outflow on the plane of the sky. We discuss possible scenarios for the formation of these nebulae and their low-ionization features. In particular, the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss geometries for single AGB stars. Finally, we discuss the possibility that point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186 are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at http://www.iac.es/publicaciones/preprints.htm
    corecore