263 research outputs found

    Quantum optics with bosons and fermions

    Full text link
    Atom optics, a field which takes much inspiration from traditional optics, has advanced to the point that some of the fundamental experiments of quantum optics, involving photon correlations, have found atomic analogs. We discuss some recent experiments on atom bunching and anti-bunching as well as some prospects for extending them to the field of many body physics.Comment: English version of "Optique atomique quantique : apr\`es les bosons, les fermions

    All optical cooling of 39^{39}K to Bose Einstein condensation

    Full text link
    We report the all-optical production of Bose Einstein condensates (BEC) of 39^{39}K atoms. We directly load 3Ă—1073 \times 10^{7} atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with 3Ă—1053 \times 10^5 atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover

    Momentum-space atom correlations in a Mott insulator

    Full text link
    We report on the investigation of the three-dimensional single-atom-resolved distributions of bosonic Mott insulators in momentum-space. Firstly, we measure the two-body and three-body correlations deep in the Mott regime, finding a perfectly contrasted bunching whose periodicity reproduces the reciprocal lattice. In addition, we show that the two-body correlation length is inversely proportional to the in-trap size of the Mott state with a pre-factor in agreement with the prediction for an incoherent state occupying a uniformly filled lattice. Our findings indicate that the momentum-space correlations of a Mott insulator at small tunnelling is that of a many-body ground-state with Gaussian statistics. Secondly, in the Mott insulating regime with increasing tunnelling, we extract the spectral weight of the quasi-particles from the momentum density profiles. On approaching the transition towards a superfluid, the momentum spread of the spectral weight is found to decrease as a result of the increased mobility of the quasi-particles in the lattice. While the shapes of the observed spectral weight agree with the ones predicted by perturbative many-body calculations, the fitted mobilities are larger than the theoretical ones. This discrepancy is similar to that previously reported on the time-of-flight visibility.Comment: 13 pages, 10 figure

    An atomic Hong-Ou-Mandel experiment

    Full text link
    The celebrated Hong, Ou and Mandel (HOM) effect is one of the simplest illustrations of two-particle interference, and is unique to the quantum realm. In the original experiment, two photons arriving simultaneously in the input channels of a beam-splitter were observed to always emerge together in one of the output channels. Here, we report on the realisation of a closely analogous experiment with atoms instead of photons. This opens the prospect of testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, with an eye on theories of the quantum-to-classical transition. Our work also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing and quantum simulation

    Guided Quasicontinuous Atom Laser

    Full text link
    We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 ÎĽ\mum during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.Comment: version published in Phys. Rev. Lett. 97, 200402 (2006

    A study of atom localization in an optical lattice by analysis of the scattered light

    Full text link
    We present an experimental study of a four beam optical lattice using the light scattered by the atoms in the lattice. We use both intensity correlations and observations of the transient behavior of the scattering when the lattice is suddenly switched on. We compare results for 3 different configurations of the optical lattice. We create situations in which the Lamb-Dicke effect is negligible and show that, in contrast to what has been stated in some of the literature, the damping rate of the 'coherent' atomic oscillations can be much smaller than the inelastic photon scattering rate.Comment: An old pape

    Anderson Localization of Expanding Bose-Einstein Condensates in Random Potentials

    Full text link
    We show that the expansion of an initially confined interacting 1D Bose-Einstein condensate can exhibit Anderson localization in a weak random potential with correlation length \sigma_R. For speckle potentials the Fourier transform of the correlation function vanishes for momenta k > 2/\sigma_R so that the Lyapunov exponent vanishes in the Born approximation for k > 1/\sigma_R. Then, for the initial healing length of the condensate \xi > \sigma_R the localization is exponential, and for \xi < \sigma_R it changes to algebraic.Comment: published versioon (no significant change compared to last version
    • …
    corecore