3 research outputs found
Determination performance of thermoacoustic heat engine simulation by delta EC software
Thermoacoustic Heat Engine probably the most efficient energy source for electronic devices for the next 10 year ahead that require small amount of electrical energy to operate. This study was to simulate the Thermoacoustic Heat Engine (TAHE) standing wave system by conducting a Fluid Structure Interaction (FSI) by using a Thermoacoustic system's software named DeltaEC for better uderstanding on the fundamental of TAHE standing wave system. Some characteristics or parameters in the system that were studied in order to derive the fundamental knowledge of TAHE standing wave system. The thickness of Hot Heat Exchangers (Hot HX) plays the major role in affecting the maximum acoustic power generated, the level of onset temperature difference and maximum pressure amplitude followed by the stack length. Hot HX dimension (thickness) contributes nearly 3.3% changes in maximum acoustic power where the lowest thickness scores the highest maximum acoustic power generated. 2.9% of increment on maximum acoustic power generated by altering the length of the stack by 5 mm
Effect of impact force for dual-hose dry blasting nozzle geometry for various pressure and distance: an experimental work
Dry ice blasting plays an essential role in today’s cleaning industry, where many industry players have used it after realizing its advantages. The disadvantage of dry ice blasting is relatively small kinetic energy and offer less aggressive clean effect, especially for dual-hose nozzle geometry. This project was mainly to study the impact force of nozzle geometry of dry ice blasting concerning pressure and distance variation. The nozzle geometries with optimum size and shape are fabricated based on a recent literature study. The experimental research on the effect of the impact forces on different pressures and distances has been conducted to validate the simulation study. The result shows that the optimum nozzle design gives better performance than a based model. Besides, the optimum distance for dry ice blasting operation is less than 400 mm for the pressure range of 2 bars to 4 bars. This distance gives the maximum value of the impacted force for dry ice blasting operation in the industry
Etude des multicolimites et des multiadjoints
SIGLEBSEB223426T / UCL - Université Catholique de LouvainBEBelgiu