6 research outputs found

    Prediction, prevention and personalisation of medication for the prenatal period: genetic prenatal tests for both rare and common diseases

    Get PDF
    Genetic testing usually helps physicians to determine possible genetic diseases in unborn babies, genetic disorders of patients and the carriers who might pass the mutant gene on to their children. They are performed on blood, tissues or other body fluids. In recent years, the screening tests and diagnostic tests have improved quickly and, as a result, the risks of pregnancy can be determined more commonly and physicians can diagnose several genetic disorders in the prenatal period. Detecting the abnormalities in utero enables correct management of the pregnancy, prenatal and postnatal medical care, and it is also important for making well informed decisions about continuing or terminating a pregnancy. Besides the improvements of conventional invasive diagnostic tests, the discovery of circulating cell-free foetal nucleic acids in maternal plasma has developed a new point of view for non-invasive prenatal diagnosis recently

    A Novel COL4A3 Mutation Causes Autosomal-Recessive Alport Syndrome in a Large Turkish Family

    No full text
    Background: Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Methods: Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction-amplified and Sanger-sequenced from genomic DNA. Results: The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. Conclusions: We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis

    A novel homozygous GALC mutation: Very early onset and rapidly progressive Krabbe disease

    No full text
    A clear cut genotype-phenotype correlation for Krabbe disease is not available. Therefore, it is important to identify new mutations and their associated phenotypes to predict the prognosis of the disease. The aim of this study is to identify the causative mutation(s) in a family with Krabbe disease. After a clinical evaluation and suspicion of Krabbe disease galactocerebrosidase activity was analyzed and GALC gene mutation analysis was performed. The galactocerebrosidase enzyme activity was 0.01 nmol/mg/h protein (normal range 0.8-4). For further investigation mutation screening was performed by Sanger sequencing across the 17 exons of GALC gene. A novel homozygous mutation c.727delT (p.S243QfsX7) was found. In this study we present the clinical findings along with a novel GALC mutation in a consanguineous Turkish family. Although the relationship between the various genotypes and phenotypes in Krabbe disease has not been fully elucidated an accurate genetic family study is helpful for genetic counseling follow-up and therapy of Krabbe disease. Also, it is important to identify new mutations in order to clarify their clinical importance, to assess the prognosis of the disease, and to suggest either prenatal diagnosis or preimplantation genetic diagnosis to the effected families. (C) 2012 Elsevier B.V. All rights reserved

    A Novel COL4A3

    No full text
    Background: Alport syndrome (AS) is a genetically heterogeneous disorder that is characterized by hematuria, progressive renal failure typically resulting in end-stage renal disease, sensorineural hearing loss, and variable ocular abnormalities. Only 15% of cases with AS are autosomal recessive and are caused by mutations in the COL4A3 or COL4A4 genes, encoding type IV collagen. Methods: Clinical data in a large consanguineous family with four affected members were reviewed, and genomic DNA was extracted. For mapping, 15 microsatellite markers flanking COL4A3, COL4A4, and COL4A5 in 16 family members were typed. For mutation screening, all coding exons of COL4A3 were polymerase chain reaction- amplified and Sanger-sequenced from genomic DNA. Results: The disease locus was mapped to chromosome 2q36.3, where COL4A3 and COL4A4 reside. Sanger sequencing revealed a novel mis-sense mutation (c.2T>C; p.M1T) in exon 1 of COL4A3. The identified nucleotide change was not found in 100 healthy ethnicity-matched controls via Sanger sequencing. Conclusions: We present a large consanguineous Turkish family with AS that was found to have a COL4A3 mutation as the cause of the disease. Although the relationship between the various genotypes and phenotypes in AS has not been fully elucidated, detailed clinical and molecular analyses are helpful for providing data to be used in genetic counseling. It is important to identify new mutations to clarify their clinical importance, to assess the prognosis of the disease, and to avoid renal biopsy for final diagnosis

    FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing

    No full text
    In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing

    ATP6V1B1

    No full text
    Distal renal tubular acidosis (DRTA) is characterized by tubular defects in urinary acidification and hyperchloremic metabolic acidosis, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis and nephrolithiasis. Mutations in ATP6V1B1 cause DRTA associated with sensorineural hearing loss. The objective of this multicenter study is to screen DRTA patients with sensorineural hearing loss for ATP6V1B1 gene mutations and present genotype/phenotype correlation. Clinical data in five unrelated consanguineous families with DRTA and hearing loss were obtained in Turkey. For mutation screening, all coding exons of ATP6V1B1 were PCR-amplified and sequenced from genomic DNA. In our cohort of five families, there were four different homozygous ATP6V1B1 mutations in affected individuals: c.91C>T (p.R31X), c.232G>A (p.G78R), c.497delC (p.T166RfsX9) and c.1155dupC (p.I386HfsX56). Our study shows that rare and family-specific variants in ATP6V1B1 are responsible for DRTA and sensorineural hearing loss syndrome in Turkey. While firm genotype-phenotype correlations are not available, detailed clinical and molecular analyses provide data to be used in genetic counseling
    corecore