41 research outputs found

    Detection of keyboard vibrations and effects on perceived piano quality

    Get PDF
    Two experiments were conducted on an upright and a grand piano, both either producing string vibrations or conversely being silent after the initial keypress, while pianists were listening to the feedback from a synthesizer through insulating headphones. In a quality experiment, participants unaware of the silent mode were asked to play freely and then rate the instrument according to a set of attributes and general preference. Participants preferred the vibrating over the silent setup, and preference ratings were associated to auditory attributes of richness and naturalness in the low and middle ranges. Another experiment on the same setup measured the detection of vibrations at the keyboard, while pianists played notes and chords of varying dynamics and duration. Sensitivity to string vibrations was highest in the lowest register and gradually decreased up to note D5. After the percussive transient, the tactile stimuli exhibited spectral peaks of acceleration whose perceptibility was demonstrated by tests conducted in active touch conditions. The two experiments confirm that piano performers perceive vibratory cues of strings mediated by spectral and spatial summations occurring in the Pacinian system in their fingertips, and suggest that such cues play a role in the evaluation of quality of the musical instrument

    Rate Effects on Timing, Key Velocity, and Finger Kinematics in Piano Performance

    Get PDF
    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement “signatures” may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound

    Implementation and Characterization of Vibrotactile Interfaces

    Get PDF
    While a standard approach is more or less established for rendering basic vibratory cues in consumer electronics, the implementation of advanced vibrotactile feedback still requires designers and engineers to solve a number of technical issues. Several off-the-shelf vibration actuators are currently available, having different characteristics and limitations that should be considered in the design process. We suggest an iterative approach to design in which vibrotactile interfaces are validated by testing their accuracy in rendering vibratory cues and in measuring input gestures. Several examples of prototype interfaces yielding audio-haptic feedback are described, ranging from open-ended devices to musical interfaces, addressing their design and the characterization of their vibratory output

    Perception of Vibrotactile Cues in Musical Performance

    Get PDF
    We suggest that studies on active touch psychophysics are needed to inform the design of haptic musical interfaces and better understand the relevance of haptic cues in musical performance. Following a review of the previous literature on vibrotactile perception in musical performance, two recent experiments are reported. The first experiment investigated how active finger-pressing forces affect vibration perception, finding significant effects of vibration type and force level on perceptual thresholds. Moreover, the measured thresholds were considerably lower than those reported in the literature, possibly due to the concurrent effect of large (unconstrained) finger contact areas, active pressing forces, and long-duration stimuli. The second experiment assessed the validity of these findings in a real musical context by studying the detection of vibrotactile cues at the keyboard of a grand and an upright piano. Sensitivity to key vibrations in fact not only was highest at the lower octaves and gradually decreased toward higher pitches; it was also significant for stimuli having spectral peaks of acceleration similar to those of the first experiment, i.e., below the standard sensitivity thresholds measured for sinusoidal vibrations under passive touch conditions

    The Role of Haptic Cues in Musical Instrument Quality Perception

    Get PDF
    We draw from recent research in violin quality evaluation and piano performance to examine whether the vibrotactile sensation felt when playing a musical instrument can have a perceptual effect on its judged quality from the perspective of the musician. Because of their respective sound production mechanisms, the violin and the piano offer unique example cases and diverse scenarios to study tactile aspects of musical interaction. Both violinists and pianists experience rich haptic feedback, but the former experience vibrations at more bodily parts than the latter. We observe that the vibrotactile component of the haptic feedback during playing, both for the violin and the piano, provides an important part of the integrated sensory information that the musician experiences when interacting with the instrument. In particular, the most recent studies illustrate that vibrations felt at the fingertips (left hand only for the violinist) can lead to an increase in perceived sound loudness and richness, suggesting the potential for more research in this direction

    Double Basses on the Stage Floor ISMA 2007 DOUBLE BASSES ON THE STAGE FLOOR

    No full text
    Abstract It is often claimed that a compliant stage floor in contact with the end pin of a double bass will act much like a tabletop in contact with a tuning fork, and assist in radiating the low-frequent sound. On the other hand, it is also claimed with the same conviction that a compliant floor will act as an absorber of airborne sound and thus shorten the low-frequency reverberation time. This pilot study looks at basses' end-pin contact with the floor in terms of impedances and transfer functions in the range 20 to 500 Hz. It was observed that below 100 Hz the transfer ratio is often surprisingly high, in fact noticeably higher than zero dB. The explanation is that while the bass primarily is acting as mass in this range, the floor is often acting as a spring. Data of two double basses, each with two end-pin angles, and a small selection of concert-hall stage floors are discussed in this paper

    TIME DOMAIN SIMULATIONS OF STRING INSTRUMENTS. A LINK BETWEEN PHYSICAL MODELING AND MUSICAL PERCEPTION

    No full text
    String vibrations are simulated in the time-domain, using appropriate finite difference schemes. Initial and boundary conditions are derived from the physics of string instruments. A number of physical constants are modified step by step, and listening tests are performed. in order to evaluate their perceptual relevance
    corecore