1 research outputs found

    Initiation and Inhibition of Dealloying of Single Crystalline Cu<sub>3</sub>Au (111) Surfaces

    No full text
    Dealloying is widely utilized but is a dangerous corrosion process as well. Here we report an atomistic picture of the initial stages of electrochemical dealloying of the model system Cu<sub>3</sub>Au (111). We illuminate the structural and chemical changes during the early stages of dissolution up to the critical potential, using a unique combination of advanced surface-analytical tools. Scanning tunneling microscopy images indicate an interlayer exchange of topmost surface atoms during initial dealloying, while scanning Auger-electron microscopy data clearly reveal that the surface is fully covered by a continuous Au-rich layer at an early stage. Initiating below this first layer a transformation from stacking-reversed toward substrate-oriented Au surface structures is observed close to the critical potential. We further use the observed structural transitions as a reference process to evaluate the mechanistic changes induced by a thiol-based model-inhibition layer applied to suppress surface diffusion. The initial ultrathin Au layer is stabilized with the intermediate island morphology completely suppressed, along an anodic shift of the breakdown potential. Thiol-modification induces a peculiar surface microstructure in the form of microcracks exhibiting a nanoporous core. On the basis of the presented atomic-scale observations, an interlayer exchange mechanism next to pure surface diffusion becomes obvious which may be controlling the layer thickness and its later change in orientation
    corecore