9 research outputs found

    In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope

    Get PDF
    In nanoindentation, the occurrence of cracks, pileup, sink-in, or film delamination adds additional complexity to the analysis of the load-displacement curves. Many techniques and analysis methods have been used to extract both qualitative and quantitative information from the indentation test both during and after the test. Much of this information is obtained indirectly or may even be overlooked by current testing methods (e.g., cracks that open only during the loading cycle of the test may go unnoticed from a typical residual indentation analysis). Here we report on the development of a miniature depth-sensing nanoindentation instrument and its integration into a high-resolution scanning electron microscope. Real-time observation of the nanoindentation test via scanning electron microscopy allows for visualization and detection of certain events such as crack initiation, pileup, or sink-in, and other material deformation phenomena. Initial results from aluminum 〈100〉 and a thin gold film (∼225 nm) are presente

    In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon

    No full text
    As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al-Mg films. To this end, in situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al-Mg films with varying Mg contents. The observed propagation of dislocations is markedly different between Al and Al-Mg films, i.e. the presence of solute Mg results in solute drag, evidenced by a jerky-type dislocation motion with a mean jump distance that compares well to earlier theoretical and experimental results. It is proposed that this solute drag accounts for the difference between the load-controlled indentation responses of Al and Al-Mg alloys. In contrast to Al-Mg alloys, several yield excursions are observed during initial indentation of pure Al, which are commonly attributed to the collective motion of dislocations nucleated under the indenter. Displacement-controlled indentation does not result in a qualitative difference between Al and Al-Mg, which can be explained by the specific feedback characteristics providing a more sensitive detection of plastic instabilities and allowing the natural process of load relaxation to occur. The in situ indentation measurements confirm grain boundary motion as an important deformation mechanism in ultrafine-grained Al when it is subjected to a highly inhomogeneous stress field as produced by a Berkovich indenter. It is found that solute Mg effectively pins high-angle grain boundaries during such deformation. The mobility of low-angle boundaries is not affected by the presence of Mg

    Recent Synthetic Approaches and Biological Evaluations of Amino Hexahydroquinolines and Their Spirocyclic Structures

    No full text
    corecore