21 research outputs found
An Explanation for Terson Syndrome at Last: the Glymphatic Reflux Theory
Terson Syndrome (TS) describes the presence of intraocular hemorrhage in patients with intracranial hemorrhage, typically subarachnoid hemorrhage. Despite TS being a well-defined and frequently occurring phenomenon, its pathophysiology remains controversial. This review will present the current understanding of TS, with view to describing a contemporary and more plausible pathomechanism of TS, given recent advances in ophthalmic science and neurobiology. Previously proposed theories include a sudden rise in intracranial pressure (ICP) transmitted to the optic nerve sheath leading to rupture of retinal vessels; or intracranial blood extending to the orbit via the optic nerve sheath. The origin of blood in TS is uncertain, but retinal vessels appear to be an unlikely source. In addition, an anatomical pathway for blood to enter the eye from the intracranial space remains poorly defined. An ocular glymphatic system has recently been described, drainage of which from the globe into intracranial glymphatics is reliant on the pressure gradient between intraocular pressure and intracranial pressure. The glymphatic pathway is the only extravascular anatomical conduit between the subarachnoid space and the retina. We propose that subarachnoid blood in skull base cisterns near the optic nerve is the substrate of blood in TS. Raised ICP causes it to be refluxed through glymphatic channels into the globe, resulting in intraocular hemorrhage. We herewith present glymphatic reflux as an alternative theory to explain the phenomenon of Terson Syndrome
Recommended from our members
The evolution of an SBNS-accredited NANSIG simulated skills workshop for aspiring neurosurgical trainees: an analysis of qualitative and quantitative data.
Funder: Newcastle UniversityBACKGROUND: The Neurology and Neurosurgery Interest Group (NANSIG) neurosurgical skills workshop is novel in teaching neurosurgical skills solely to medical students and foundation trainees in the UK. The aim is to offer an affordable option for a high-fidelity simulation course enabling students to learn and practise specific neurosurgical skills in a safe, supervised environment. METHODS: A 10-delegate cohort was quantitatively assessed at the NANSIG neurosurgical skills workshop. Two assessors used a novel modified Objective Structured Assessment of Technical Skills (mOSATS) assessment tool, comprising 5 domains ranked according to a 5-point scale to rate delegates' ability to create a burr hole. Qualitative data from previous workshops were collected, consisting of open-ended, closed-ended and 5-point Likert scale responses to pre- and post-workshop questionnaires. Data were analysed using SPSS® software. RESULTS: Delegates scored a mean total of 62.1% (21.75/35) and 85.1% (29.8/35) in pre- and post-workshop assessments respectively revealing a statistically significant improvement. Regarding percentage of improvement, no significant difference was shown amongst candidates when comparing the number of neurosurgical cases observed and/or assisted in the past. There was no significant difference in the overall rating between the last two workshops (4.89 and 4.8 out of 5, respectively). One hundred percent of the attendees reported feeling more confident in assisting in theatre after the last two workshops. CONCLUSION: We show that a simulation workshop cannot only objectively quantify the improvement of surgical skill acquisition but can also be beneficial regardless of the extent of prior experience
ATP signalling in epilepsy
This paper focuses on a role for ATP neurotransmission and gliotransmission in the pathophysiology of epileptic seizures. ATP along with gap junctions propagates the glial calcium wave, which is an extraneuronal signalling pathway in the central nervous system. Recently astrocyte intercellular calcium waves have been shown to underlie seizures, and conventional antiepileptic drugs have been shown to attenuate these calcium waves. Blocking ATP-mediated gliotransmission, therefore, represents a potential target for antiepileptic drugs. Furthermore, while knowledge of an antiepileptic role for adenosine is not new, a recent study showed that adenosine accumulates from the hydrolysis of accumulated ATP released by astrocytes and is believed to inhibit distant synapses by acting on adenosine receptors. Such a mechanism is consistent with a surround-inhibitory mechanism whose failure would predispose to seizures. Other potential roles for ATP signalling in the initiation and spread of epileptiform discharges may involve synaptic plasticity and coordination of synaptic networks. We conclude by making speculations about future developments
Prospective, multicentre study of screening, investigation and management of hyponatraemia after subarachnoid haemorrhage in the UK and Ireland
Background: Hyponatraemia often occurs after subarachnoid haemorrhage (SAH). However, its clinical significance and optimal management are uncertain. We audited the screening, investigation and management of hyponatraemia after SAH. Methods: We prospectively identified consecutive patients with spontaneous SAH admitted to neurosurgical units in the United Kingdom or Ireland. We reviewed medical records daily from admission to discharge, 21 days or death and extracted all measurements of serum sodium to identify hyponatraemia (<135 mmol/L). Main outcomes were death/dependency at discharge or 21 days and admission duration >10 days. Associations of hyponatraemia with outcome were assessed using logistic regression with adjustment for predictors of outcome after SAH and admission duration. We assessed hyponatraemia-free survival using multivariable Cox regression. Results: 175/407 (43%) patients admitted to 24 neurosurgical units developed hyponatraemia. 5976 serum sodium measurements were made. Serum osmolality, urine osmolality and urine sodium were measured in 30/166 (18%) hyponatraemic patients with complete data. The most frequently target daily fluid intake was >3 L and this did not differ during hyponatraemic or non-hyponatraemic episodes. 26% (n/N=42/164) patients with hyponatraemia received sodium supplementation. 133 (35%) patients were dead or dependent within the study period and 240 (68%) patients had hospital admission for over 10 days. In the multivariable analyses, hyponatraemia was associated with less dependency (adjusted OR (aOR)=0.35 (95% CI 0.17 to 0.69)) but longer admissions (aOR=3.2 (1.8 to 5.7)). World Federation of Neurosurgical Societies grade I–III, modified Fisher 2–4 and posterior circulation aneurysms were associated with greater hazards of hyponatraemia. Conclusions: In this comprehensive multicentre prospective-adjusted analysis of patients with SAH, hyponatraemia was investigated inconsistently and, for most patients, was not associated with changes in management or clinical outcome. This work establishes a basis for the development of evidence-based SAH-specific guidance for targeted screening, investigation and management of high-risk patients to minimise the impact of hyponatraemia on admission duration and to improve consistency of patient care
Risk of confirmatory bias: Parafalcine meningioma mimicking acute subarachnoid haemorrhage
We present the case of a 44-year-old hypertensive lady with a history of headache and collapse whose initial CT demonstrated parafalcine hyperdensity. We attributed this to spontaneous subarachnoid haemorrhage, but subsequent imaging revealed an anterior parafalcine meningioma. Confirmatory bias may have played a role. The purpose of this report is to highlight and learn from this error in judgement while presenting an unusual clinical case of meningioma masquerading as haemorrhage
Does covid-19 impair endogenous neurogenesis?
Endogenous neural stem cells are thought to continue to generate new neurons throughout life in the human brain. Endogenous neurogenesis has been proposed to contribute to physiological roles in maintaining and regenerating olfaction, as well as promoting normal cognition, learning and memory. Specific impairments in these processes in COVID-19 - impaired olfaction and cognition - may implicate the SARS-CoV-2 virus in attenuating neurogenesis. Furthermore, neurogenesis has been linked with neuroregeneration; and impaired neuroregeneration has previously been linked with neurodegenerative diseases. Emerging evidence supports an association between COVID-19 infection and accelerated neurodegeneration. Also, structural changes indicating global reduction in brain size and specific reduction in the size of limbic structures - including orbitofrontal cortex, olfactory cortex and parahippocampal gyrus - as a result of SARS-CoV-2 infection have been demonstrated. This paper proposes the hypothesis that SARS-CoV-2 infection may impair endogenous neural stem cell activity. An attenuation of neurogenesis may contribute to reduction in brain size and/or neurodegenerative processes following SARS-CoV-2 infection. Furthermore, as neural stem cells are thought to be the cell of origin in glioma, better understanding of SARS-CoV-2 interaction with tumorigenic stem cells is indicated, with a view to informing therapeutic modulation. The subacute and chronic implications of attenuated endogenous neurogenesis are explored in the context of long COVID. Modulating endogenous neurogenesis may be a novel therapeutic strategy to address specific neurological manifestations of COVID-19 and potential applicability in tumour virotherapy. [Abstract copyright: Copyright © 2022 Elsevier Ltd. All rights reserved.