85 research outputs found

    Directly and parametrically excited bi-stable vibration energy harvester for broadband operation

    Get PDF
    Despite many recent advances, the wide-spread adoption of vibrational energy harvesting has been limited by the low levels of generated output power and confined operational frequency band. Recent work by the authors on parametrically excited harvesters has demonstrated over an order of magnitude power improvement. This paper presents an investigation into the simultaneous employment of both direct and parametric resonance, as well as the incorporation of bi-stability, in an attempt to further improve the mechanical-to-electrical energy conversion efficiency by broadening the output power spectrum. Multiple direct and parametric resonant peaks from a multi-degree-of-freedom system were observed and an accumulative ~10 Hz half-power bandwidth was recorded for the first 40 Hz. Real vibration data was also employed to analysis the RMS power response effectiveness of the proposed system

    Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting

    Get PDF
    A cantilever with an end mass is one of the most popular designs for piezoelectric MEMS vibration energy harvesting. The inclusion of a proof mass near the free end of a micro-cantilever can significantly enhances the power responsiveness of a vibration energy harvester per unit acceleration. However, the accommodation of the proof mass comes at the expense of the active piezoelectric area. This paper numerically and experimentally investigates this compromise, and explores the optimal proof-mass-to-cantilever-length ratio for power maximization. It was found that an end mass occupying about 60%-70% of the total cantilever length is optimal within linear response, and they notably outperform comparable cantilevers with 40% and 50% of end mass. In addition, nonlinear squeeze film air damping within the chip package was found to adversely affect the cantilevers with larger mass more significantly. A harvester prototype with 70% of the length covered by end mass (5 mm 3 ) was able to generate 1.78 μW at 0.6 ms -2 and up to 20.5 μW at 2.7 ms -2 and 210 Hz when not limited by nonlinear damping. This result outperforms the previously reported counterparts in the literature by nearly an order of a magnitude in terms of power density normalized against acceleration squared

    Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    Get PDF
    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology

    Anchor limited Q in flexural mode resonators

    No full text
    This paper reports a preliminary examination of the effect of anchor geometry design on the quality factor of flexural mode resonators operating in vacuum using both FE simulation and measurements of resonator frequency response. Three types of structures have been considered in this study: an elliptical mode ring, a double ended tuning fork, and a doubly-clamped beam. We consider the relative distribution of strain energies in both the resonant structure and the connecting stem, which is indicative of the measured quality factor. The measured quality factors of the different structures are compared against each other, based on which suggestions are proposed for optimizing the anchor limited quality factor (Q) in flexural mode micromechanical resonators

    Common mode rejection in electrically coupled MEMS resonators utilizing mode localization for sensor applications

    No full text
    Measuring shifts in eigenstates due to vibration localization in an array of weakly coupled resonators offer two distinct advantages for sensor applications as opposed to the technique of simply measuring resonant frequency shifts: (1) orders of magnitude enhancement in parametric sensitivity and (2) intrinsic common mode rejection. In this paper, we experimentally demonstrate the common mode rejection capabilities of such sensors. The vibration behavior is studied in pairs of nearly identical MEMS resonators that are electrically coupled, and subjected to small perturbations in stiffness under different ambient pressure and temperature. The shifts in the eigenstates for the same parametric perturbation in stiffness are experimentally demonstrated to be over three orders of magnitude greater than corresponding resonant frequency variations. They are also shown to remain relatively constant to variations in ambient temperature and pressure. This increased relative robustness to environmental drift, along with the advantage of ultra-high parametric sensitivity, opens the door to an alternative approach to achieving higher sensitivity and stability in micromechanical sensors

    Dynamic response of water droplet coated silicon MEMS resonators

    No full text
    This paper studies the dynamic response of silicon bulk acoustic mode resonators spotted with water droplets of varying volume on the top surface. Three different cases were compared: (i) bare silicon resonators, (ii) parylene C coated resonators and (iii) hydrophobic self assembled monolayer coated resonators. Experimentally derived variations in quality factor are compared with those obtained analytically for the electrostatically driven square extensional mode resonator. The measured quality factors showed a good agreement with the models

    Ultrasensitive mode-localized micromechanical electrometer

    No full text
    We report a highly sensitive prototype micromechanical electrometer that employs the phenomena of mode-localization and curve veering for monitoring minute charge fluctuations across an input capacitor. The device consists of a pair of weakly coupled, nearly identical single crystal silicon, double-ended tuning fork (DETF) resonators. An addition of charge across an input capacitor on one of the coupled resonators induces a differential axial strain on that resonator relative to the other consequently perturbing the structural symmetry of the nearly periodic system. The resulting shifts in the eigenstates for the same magnitudes of charge input are theoretically and experimentally demonstrated to be nearly three orders of magnitude greater than corresponding resonant frequency variations. The topology chosen may also be adapted for force or strain monitoring thereby widening the relevance of the results reported here to precision inertial sensing as well

    Electrostatically transduced face-shear mode silicon MEMS microresonator

    No full text
    Silicon microresonators are increasingly viewed as attractive candidates for a variety of frequency selective signal processing applications due to miniaturization and potential for integration with CMOS. In this work, we present a new electrostatically transduced face-shear (FS) mode square plate single crystal silicon resonator that rivals previously reported bulk mode resonator topologies and demonstrates good frequency scaling. A microfabricated face-shear mode resonator with 800 ?m side length demonstrates a resonant frequency of 3.638 MHz, Q of 11193 in air and 836283 in vacuum as well as a TCF of -19ppm/K
    • …
    corecore