1,815 research outputs found

    Enhanced Performance Cooperative Localization Wireless Sensor Networks Based on Received-Signal-Strength Method and ACLM

    Get PDF
    There has been a rise in research interest in wireless sensor networks (WSNs) due to the potential for his or her widespread use in many various areas like home automation, security, environmental monitoring, and lots more. Wireless sensor network (WSN) localization is a very important and fundamental problem that has received a great deal of attention from the WSN research community. Determining the relative coordinate of sensor nodes within the network adds way more aiming to sense data. The research community is extremely rich in proposals to deal with this challenge in WSN. This paper explores the varied techniques proposed to deal with the acquisition of location information in WSN. In the study of the research paper finding the performance in WSN and those techniques supported the energy consumption in mobile nodes in WSN, needed to implement the technique and localization accuracy (error rate) and discuss some open issues for future research. The thought behind Internet of things is that the interconnection of the Internet-enabled things or devices to every other and human to realize some common goals. WSN localization is a lively research area with tons of proposals in terms of algorithms and techniques. Centralized localization techniques estimate every sensor node's situation on a network from a central Base Station, finding absolute or relative coordinates (positioning) with or without a reference node, usually called the anchor (beacon) node. Our proposed method minimization error rate and finding the absolute position of nodes

    Framingham Heart Study

    Get PDF
    This paper describes the Framingham Heart Study one of the most important epidemiological studies ever conducted, and the underlying analytics that led to our current understanding of cardiovascular disease. The logistic regression algorithm is used to analyse the Framingham data set and predict the heart risk of a patient

    Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

    Full text link
    It is often difficult to correctly implement a Boolean controller for a complex system, especially when concurrency is involved. Yet, it may be easy to formally specify a controller. For instance, for a pipelined processor it suffices to state that the visible behavior of the pipelined system should be identical to a non-pipelined reference system (Burch-Dill paradigm). We present a novel procedure to efficiently synthesize multiple Boolean control signals from a specification given as a quantified first-order formula (with a specific quantifier structure). Our approach uses uninterpreted functions to abstract details of the design. We construct an unsatisfiable SMT formula from the given specification. Then, from just one proof of unsatisfiability, we use a variant of Craig interpolation to compute multiple coordinated interpolants that implement the Boolean control signals. Our method avoids iterative learning and back-substitution of the control functions. We applied our approach to synthesize a controller for a simple two-stage pipelined processor, and present first experimental results.Comment: This paper originally appeared in FMCAD 2013, http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/index.shtml. This version includes an appendix that is missing in the conference versio

    Incentive Stackelberg Mean-payoff Games

    Get PDF
    We introduce and study incentive equilibria for multi-player meanpayoff games. Incentive equilibria generalise well-studied solution concepts such as Nash equilibria and leader equilibria (also known as Stackelberg equilibria). Recall that a strategy profile is a Nash equilibrium if no player can improve his payoff by changing his strategy unilaterally. In the setting of incentive and leader equilibria, there is a distinguished player called the leader who can assign strategies to all other players, referred to as her followers. A strategy profile is a leader strategy profile if no player, except for the leader, can improve his payoff by changing his strategy unilaterally, and a leader equilibrium is a leader strategy profile with a maximal return for the leader. In the proposed case of incentive equilibria, the leader can additionally influence the behaviour of her followers by transferring parts of her payoff to her followers. The ability to incentivise her followers provides the leader with more freedom in selecting strategy profiles, and we show that this can indeed improve the payoff for the leader in such games. The key fundamental result of the paper is the existence of incentive equilibria in mean-payoff games. We further show that the decision problem related to constructing incentive equilibria is NP-complete. On a positive note, we show that, when the number of players is fixed, the complexity of the problem falls in the same class as two-player mean-payoff games. We also present an implementation of the proposed algorithms, and discuss experimental results that demonstrate the feasibility of the analysis of medium sized games.Comment: 15 pages, references, appendix, 5 figure
    corecore