7 research outputs found
ΠΠ°ΡΠΈΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Zr-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΎΠ½Π½ΡΡ ΠΏΠΎΠΊΡΡΡΠΈΠΉ Π½Π° ΡΠΈΠ½ΠΊΠ΅
The aim of the study is to develop an environmentally friendly chromium-free passivation technology for galvanized steel. Passivation of zinc coatings was carried out by deposition of conversion coatings from solutions containing ZrO(NO3)2, Na2SiF6 and oxidizer H2O2 or K2S2O8. The effect of the solution pH, the concentration of Na2SiF6 and the type of oxidizer on the protective properties of coatings was studied by the drop method and electrochemical method of linear voltammetry in 3 % NaCl using the full factor experiment 23 . The main effects and effects of the interaction of the studied factors for the darkening time of the droplet and the dissolution potential of zinc are calculated. The solution pH in the presence of the oxidizing agent K2S2O8 influences the both parameters in the most extent. Concentration of Na2SiF6 has a significant effect on the dissolution potential of zinc and the least effect on the darkening time of the droplet. An increase in the solution pH and the concentration of Na2SiF6 increases the protective properties of the coatings. Measurements of the mass loss and open circuit potential during the resource testing of conversion coatings in 3% NaCl showed an increase in the corrosion rate over time.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ Π±Π΅ΡΡ
ΡΠΎΠΌΠΎΠ²ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°ΡΡΠΈΠ²Π°ΡΠΈΠΈ Π³Π°Π»ΡΠ²Π°Π½ΠΈΡΠ΅ΡΠΊΠΈ ΠΎΡΠΈΠ½ΠΊΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π»ΠΈ. ΠΠ°ΡΡΠΈΠ²Π°ΡΠΈΡ Π³Π°Π»ΡΠ²Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠ½ΠΊΠΎΠ²ΡΡ
ΠΏΠΎΠΊΡΡΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Π½ΠΈΡ
ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΠΊΡΡΡΠΈΠΉ ΠΈΠ· ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ZrO(NO3)2, Na2SiF6 ΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»Ρ H2O2 ΠΈΠ»ΠΈ K2S2O8. ΠΠ·ΡΡΠ°Π»ΠΎΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ pH ΡΠ°ΡΡΠ²ΠΎΡΠ°, ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Na2SiF6 ΠΈ ΡΠΈΠΏΠ° ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π·Π°ΡΠΈΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠΊΡΡΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠ°ΠΏΠ»ΠΈ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π²ΠΎΠ»ΡΡΠ°ΠΌΠΏΠ΅ΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Π² 3 %-Π½ΠΎΠΌ NaCl Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° 23 . Π Π°ΡΡΡΠΈΡΠ°Π½Ρ Π³Π»Π°Π²Π½ΡΠ΅ ΡΡΡΠ΅ΠΊΡΡ ΠΈ ΡΡΡΠ΅ΠΊΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π΄Π»Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎΡΠ΅ΠΌΠ½Π΅Π½ΠΈΡ ΠΊΠ°ΠΏΠ»ΠΈ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½ΠΈΡ ΡΠΈΠ½ΠΊΠ°. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΠΎΠ±Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ pH ΡΠ°ΡΡΠ²ΠΎΡΠ° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»Ρ K2S2O8. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Na2SiF6 ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½ΠΈΡ ΡΠΈΠ½ΠΊΠ° ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π²ΡΠ΅ΠΌΡ ΠΏΠΎΡΠ΅ΠΌΠ½Π΅Π½ΠΈΡ ΠΊΠ°ΠΏΠ»ΠΈ. Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ pH ΡΠ°ΡΡΠ²ΠΎΡΠ° ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Na2SiF6 ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π·Π°ΡΠΈΡΠ½ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠΊΡΡΡΠΈΠΉ. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅ΡΠΈ ΠΌΠ°ΡΡΡ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΠ°Π·ΠΎΠΌΠΊΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΏΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΡΡΡΡΠ½ΡΡ
ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΠΊΡΡΡΠΈΠΉ Π² 3 %-Π½ΠΎΠΌ NaCl ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ
ΠΠΠΠΠΠΠ’ΠΠ ΠΠΠ― ΠΠΠ©ΠΠ’Π ΠΠ¦ΠΠΠΠΠΠΠΠΠΠ Π‘Π’ΠΠΠ ΠΠΠΠΠΠΠ’ΠΠ ΠΠΠ’Π ΠΠ―
The results of investigation of corrosion inhibition of zinc-plated coatings in neutral chloride-containing corrosive medium by aqueous sodium vanadate solution are described. Investigations of corrosion inhibition of zinc-plated coatings on steel were performed by gravimetric and electrochemical method. The corrosive medium was neutral 3% sodium chloride solution, with a sodium vanadate concentration varied from 0.00005 M to 0.0003 M. Mass indices of corrosion, current density and corrosion potential of galvanized steel were determined depending on inhibitor concentration. Electrochemical studies show that the introduction of sodium vanadate in amounts of 0.00005β0.0003 M into the corrosive medium (3% sodium chloride solution) slows down the process of zinc corrosion. The corrosion process slows down by 3.3 times at an inhibitor concentration of 0.00005 M and by 20 times at an inhibitor concentration of 0.0002 M, respectively. An increase in the concentration of sodium vanadate to more than 0.0002 M is inappropriate, since an increase in the corrosion current occurs. The optimal corrosion inhibitor concentration for zinc-plated steel in 3% NaCl solution for Na3VO4 lies in the range of 0.0001β0.0002 Π. The protection effect of the inhibitor found by gravimetric and electrochemical methods equals to 40β76% and 93β95%, respectively.Β Β ΠΠΏΠΈΡΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠΎΡΠΎΠ±Π° Π·Π°ΡΠΈΡΡ Π³Π°Π»ΡΠ²Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠ½ΠΊΠΎΠ²ΡΡ
ΠΏΠΎΠΊΡΡΡΠΈΠΉ Π² Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΎΠΉ Ρ
Π»ΠΎΡΠΈΠ΄ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ ΡΡΠ΅Π΄Π΅ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΠΌ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠΌ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ Π²Π°Π½Π°Π΄Π°ΡΠΎΠΌ Π½Π°ΡΡΠΈΡ Na3VO4. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ½ΠΎΠΉ Π·Π°ΡΠΈΡΡ Π³Π°Π»ΡΠ²Π°Π½ΠΈΡΠ΅ΡΠΊΠΈ ΠΎΡΠΈΠ½ΠΊΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π»ΠΈ Na3VO4 Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π²Π΅ΡΠΎΠ²ΡΠΌ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² 3%-Π½ΠΎΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠ΅ Ρ
Π»ΠΎΡΠΈΠ΄Π° Π½Π°ΡΡΠΈΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° 0,0005β0,0003 Π. ΠΡΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΌΠ°ΡΡΠΎΠ²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ, ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΎΠΊΠ° ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ ΠΎΡΠΈΠ½ΠΊΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π»ΠΈ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ°. ΠΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΊΠΎΡΡΠΎΠ·ΠΈΠΎΠ½Π½ΡΡ ΡΡΠ΅Π΄Ρ (3% NaCl) Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° Π²Π°Π½Π°Π΄Π°ΡΠ° Na3VO4 Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π°Ρ
0,00005β0,0003 Π Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅Ρ ΠΏΡΠΎΡΠ΅ΡΡ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ ΡΠΈΠ½ΠΊΠ°. ΠΡΠΎΡΠ΅ΡΡ ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅ΡΡΡ Π² 3,3 ΡΠ°Π·Π° ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° 0,00005 Π, ΠΈ Π² 20 ΡΠ°Π· ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° 0,0002 Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π²Π°Π½Π°Π΄Π°ΡΠ° Π½Π°ΡΡΠΈΡ Π±ΠΎΠ»Π΅Π΅ 0,0002 Π Π½Π΅ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠΊΠ° ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΡΡ
Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ½ΠΎΠΉ Π·Π°ΡΠΈΡΡ ΠΎΡΠΈΠ½ΠΊΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π»ΠΈ Π²Π°Π½Π°Π΄Π°ΡΠΎΠΌ Na3VO4 ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΠΊΠΎΡΡΠΎΠ·ΠΈΠΈ Na3VO4 Π² 3%-Π½ΠΎΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠ΅ NaCl Π»Π΅ΠΆΠΈΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 0,0001β0,0002 Π. ΠΡΠΈ ΡΡΠΎΠΌ Π·Π°ΡΠΈΡΠ½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ°, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π²Π΅ΡΠΎΠ²ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ, ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 40β76%, Π° ΡΠ»Π΅ΠΊΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ β 93β95%.Β
Nickel pigments preparation by spent nickel-plating electrolyte precipitation
A way to recycle spent waste sulfuric acid nickel electrolytes by nickel compounds extracting is offered and in this paper. The nickel (II) ions con centration was defined by chemical analysis and solid phase composition were determined by elemental analysis.
Slightly soluble nickel (II) compounds were precipitated with sodium hydroxide solution and satu-rated sodium orthophosphate solution during boiling. Also waste degreasing solution containing sodium hydroxide, sodium carbonate and sodium phosphate was used. Nickel (II) ions extraction degree for degreasing solution precipitation was 97%, and for sodium hydroxide solution or sodium orthophosphate solution precipitation β 99.9%. For nickel (II) compo unds obtained X-ray analysis, elemental analysis
and thermal analysis were carried out, their IR-abs orption spectra micrographs were obtained. Colored compounds obtained from waste electrolytes had various shades of green colour scheme and high concentration of chromofore ions. That made them possible for pigments producing. The precipitates obtained were dried, calcinated, milled, sifted and then used as pigment compositions
Nickel pigments preparation by spent nickel-plating electrolyte precipitation
A way to recycle spent waste sulfuric acid nickel electrolytes by nickel compounds extracting is offered and in this paper. The nickel (II) ions con centration was defined by chemical analysis and solid phase composition were determined by elemental analysis.
Slightly soluble nickel (II) compounds were precipitated with sodium hydroxide solution and satu-rated sodium orthophosphate solution during boiling. Also waste degreasing solution containing sodium hydroxide, sodium carbonate and sodium phosphate was used. Nickel (II) ions extraction degree for degreasing solution precipitation was 97%, and for sodium hydroxide solution or sodium orthophosphate solution precipitation β 99.9%. For nickel (II) compo unds obtained X-ray analysis, elemental analysis
and thermal analysis were carried out, their IR-abs orption spectra micrographs were obtained. Colored compounds obtained from waste electrolytes had various shades of green colour scheme and high concentration of chromofore ions. That made them possible for pigments producing. The precipitates obtained were dried, calcinated, milled, sifted and then used as pigment compositions
Analysis of corrosive properties of zinc-containing coatings based on dispersed waste hot zinc plating
A comparative analysis of the corrosion properties of zinc-containing coatings obtained on the basis of metallic powder zinc and dispersed hot-dip galvanized waste has been carried out. The results of a study of the corrosion resistance of zinc-containing coatings by the electrochemical method and in a salt spray chamber have shown that coatings obtained on the basis of dispersed hot-dip galvanized waste are not inferior in protective properties to coatings based on powder standard zinc