2 research outputs found

    Towards Software Health Management with Bayesian Networks

    No full text
    More and more systems (e.g., aircraft, machinery, cars) rely heavily on software, which performs safety-critical operations. Assuring software safety though traditional V&V has become a tremendous, if not impossible task, given the growing size and complexity of the software. We propose that iSWHM (Integrated SoftWare Health Management) can increase safety and reliability of high-assurance software systems. iSWHM uses advanced techniques from the area of system health management in order to continuously monitor the behavior of the software during operation, quickly detect anomalies and perform automatic and reliable root-cause analysis, while not replacing traditional V&V. Information provided by the iSWHM system can be used for automatic mitigation mechanisms (e.g., recovery, dynamic reconfiguration) or presented to a human operator. iSWHM’s prognostic capabilities will further improve reliability and availability as it provides information about soon-to-occur failures or looming performance bottlenecks. In this paper, we will discuss challenges and future potential and describe how Bayesian networks (BN) could be used for iSWHM modeling

    Software Health Management with Bayesian Networks

    No full text
    Software Health Management (SWHM) is an emerging field which addresses the critical need to detect, diagnose, predict, and mitigate adverse events due to software faults and failures. These faults could arise for numerous reasons including coding errors, unanticipated faults or failures in hardware, or problematic interactions with the external environment. This paper demonstrates a novel approach to software health management based on a rigorous Bayesian formulation that monitors the behavior of software and operating system, performs probabilistic diagnosis, and provides information about the most likely root causes of a failure or software problem. Translation of the Bayesian network model into an efficient data structure, an arithmetic circuit, makes it possible to perform SWHM on resource-restricted embedded computing platforms as found in aircraft, unmanned aircraft, or satellites. SWHM is especially important for safety critical systems such as aircraft control systems. In this paper, we demonstrate our Bayesian SWHM system on three realistic scenarios from an aircraft control system: (1) aircraft file-system based faults, (2) signal handling faults, and (3) navigation faults due to IMU (inertial measurement unit) failure or compromised GPS (Global Positioning System) integrity. We show that the method successfully detects and diagnoses faults in these scenarios. We also discuss the importance of verification and validation of SWHM systems
    corecore