3 research outputs found

    Modeling the shape hierarchy for visually guided grasping

    Get PDF
    The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP). The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e., distance from the observer to the object surface). We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP ,provide a promising model of AIP electrophysiology data. Further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp contro

    Closed-Loop Neuromorphic Benchmarks

    Get PDF
    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is evenmore difficult when the task of interest is a closed-loop task; that is, a task where the outputfrom the neuromorphic hardware affects some environment, which then in turn affects thehardware’s future input. However, closed-loop situations are one of the primary potential uses ofneuromorphic hardware. To address this, we present a methodology for generating closed-loopbenchmarks that makes use of a hybrid of real physical embodiment and a type of minimalsimulation. Minimal simulation has been shown to lead to robust real-world performance, whilestill maintaining the practical advantages of simulation, such as making it easy for the samebenchmark to be used by many researchers. This method is flexible enough to allow researchersto explicitly modify the benchmarks to identify specific task domains where particular hardwareexcels. To demonstrate the method, we present a set of novel benchmarks that focus on motorcontrol for an arbitrary system with unknown external forces. Using these benchmarks, we showthat an error-driven learning rule can consistently improve motor control performance across arandomly generated family of closed-loop simulations, even when there are up to 15 interactingjoints to be controlled

    Serendipitous Offline Learning in a Neuromorphic Robot

    Get PDF
    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour
    corecore