9 research outputs found

    Disturbance reduces fungal white-rot litter mat cover in a wet subtropical forest

    Get PDF
    Fungi that bind leaf litter into mats and produce white-rot via degradation of lignin and other aromatic compounds influence forest nutrient cycling and soil fertility. Extent of white-rot litter mats formed by basidiomycete fungi in Puerto Rico decreased in response to disturbances—a simulated hurricane treatment executed by canopy trimming and debris addition in 2014, a drought in 2015, a treefall, and two hurricanes 10 days apart in September 2017. Percent fungal litter mat cover ranged from 0.4% after Hurricanes Irma and Maria to a high of 53% in forest with undisturbed canopy prior to the 2017 hurricanes, with means mostly between 10% and 45% of fungal litter mat cover in undisturbed forest. Drought decreased litter mat cover in both treatments, except in one control plot dominated by a drought-resistant fungus, Marasmius crinis-equi. Percent fungal litter mat cover sharply declined after hurricanes, a treefall, and a simulated hurricane treatment. Solar radiation was significantly inversely correlated with relative humidity (RH) and percent litter mat cover within each of the four climatic seasons. Solar radiation was also directly correlated with prior month litterfall, while RH was moderately correlated with throughfall, rain, and litter wetness. However, rainfall was inversely correlated with litter mat cover, possibly due to erosion or saturation during high rainfall events. Canopy opening reduced leaf fall and litter mat cover but these variables were not correlated except in winter. The main factor inhibiting basidiomycete fungi that bind leaf litter into mats was likely lower litter moisture associated with drought and increased solar radiation from canopy opening but secondary compounds in green litterfall may have contributed. Although higher litterfall likely increases fungal mat cover under closed canopy, changes in environmental factors apparently had a stronger inhibitory effect following canopy disturbances. Drought tolerance of some basidiomycete fungal litter mat species provided some resilience to drought

    Solar radiation and soil moisture drive tropical forest understory responses to experimental and natural hurricanes

    Get PDF
    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species, Cyathea arborea and Cecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary-successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late-successional species, such as Manilkara bidentata and Sloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled

    Hurricane Maria in the U.S. Caribbean: Disturbance Forces, Variation of Effects, and Implications for Future Storms

    No full text
    The impact of Hurricane Maria on the U.S. Caribbean was used to study the causes of remotely-sensed spatial variation in the effects of (1) vegetation index loss and (2) landslide occurrence. The vegetation index is a measure of canopy ‘greenness’, a combination of leaf chlorophyll, leaf area, canopy cover and structure. A generalized linear model was made for each kind of effect, using idealized maps of the hurricane forces, along with three landscape characteristics that were significantly associated. In each model, one of these characteristics was forest fragmentation, and another was a measure of disturbance-propensity. For the greenness loss model, the hurricane force was wind, the disturbance-propensity measure was initial greenness, and the third landscape characteristic was fraction forest cover. For the landslide occurrence model, the hurricane force was rain, the disturbance-propensity measure was amount of land slope, and the third landscape characteristic was soil clay content. The model of greenness loss had a pseudo R2 of 0.73 and showed the U.S. Caribbean lost 31% of its initial greenness from the hurricane, with 51% lost from the initial in the Luquillo Experimental Forest (LEF) from Hurricane Maria along with Hurricane Irma. More greenness disturbance was seen in areas with less wind sheltering, higher elevation and topographic sides. The model of landslide occurrence had a pseudo R2 of 0.53 and showed the U.S. Caribbean had 34% of its area and 52% of the LEF area with a landslide density of at least one in 1 km2 from Hurricane Maria. Four experiments with parameters from previous storms of wind speed, storm duration, rainfall, and forest structure over the same storm path and topographic landscape were run as examples of possible future scenarios. While intensity of the storm makes by far the largest scenario difference, forest fragmentation makes a sizable difference especially in vulnerable areas of high clay content or high wind susceptibility. This study showed the utility of simple hurricane force calculations connected with landscape characteristics and remote-sensing data to determine forest susceptibility to hurricane effects

    Tropical Forest Microclimatic Changes: Hurricane, Drought, and 15–20 Year Climate Trend Effects on Elevational Gradient Temperature and Moisture

    No full text
    The effects of hurricanes Irma and Maria and a severe drought on the temperature, precipitation, and soil moisture (under canopy and in the open) were calculated at 22 sites from 0–1045 m in northeastern Puerto Rico from 2001–2021, against the background short-term trend. Median and minimum air temperatures increased uniformly across the elevational gradient, 1.6 times as fast in the air under the canopy (+0.08 °C/yr) and 2.2 times as fast in the soil under the canopy (+0.11 °C/yr) as for air temperature in the open. There were no substantial moisture trends (average decrease <0.01 mm/yr). The peak effect of the hurricanes on under-canopy air temperature was the same as under-canopy soil temperature at 1000 m (+3, 0.7, 0.4 °C for maximum, median, minimum) but air maximum and minimum temperature peak effects were twice as high at 0 m (and soil temperatures stayed constant). Soil temperature hurricane recovery took longer at higher elevations. The peak effect of the hurricanes and the drought on the soil moisture was the same (but in opposite directions, ±0%), except for the wettest months where drought peak effect was larger and increasing with elevation. Differing patterns with elevation indicate different ecosystem stresses

    Hurricane Maria in the U.S. Caribbean: Disturbance Forces, Variation of Effects, and Implications for Future Storms

    No full text
    The impact of Hurricane Maria on the U.S. Caribbean was used to study the causes of remotely-sensed spatial variation in the effects of (1) vegetation index loss and (2) landslide occurrence. The vegetation index is a measure of canopy ‘greenness’, a combination of leaf chlorophyll, leaf area, canopy cover and structure. A generalized linear model was made for each kind of effect, using idealized maps of the hurricane forces, along with three landscape characteristics that were significantly associated. In each model, one of these characteristics was forest fragmentation, and another was a measure of disturbance-propensity. For the greenness loss model, the hurricane force was wind, the disturbance-propensity measure was initial greenness, and the third landscape characteristic was fraction forest cover. For the landslide occurrence model, the hurricane force was rain, the disturbance-propensity measure was amount of land slope, and the third landscape characteristic was soil clay content. The model of greenness loss had a pseudo R2 of 0.73 and showed the U.S. Caribbean lost 31% of its initial greenness from the hurricane, with 51% lost from the initial in the Luquillo Experimental Forest (LEF) from Hurricane Maria along with Hurricane Irma. More greenness disturbance was seen in areas with less wind sheltering, higher elevation and topographic sides. The model of landslide occurrence had a pseudo R2 of 0.53 and showed the U.S. Caribbean had 34% of its area and 52% of the LEF area with a landslide density of at least one in 1 km2 from Hurricane Maria. Four experiments with parameters from previous storms of wind speed, storm duration, rainfall, and forest structure over the same storm path and topographic landscape were run as examples of possible future scenarios. While intensity of the storm makes by far the largest scenario difference, forest fragmentation makes a sizable difference especially in vulnerable areas of high clay content or high wind susceptibility. This study showed the utility of simple hurricane force calculations connected with landscape characteristics and remote-sensing data to determine forest susceptibility to hurricane effects

    Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

    No full text
    Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.Fil: Van Beusekom, Ashley E.. United States Department of Agriculture; Estados UnidosFil: Gould, William A.. United States Department of Agriculture; Estados UnidosFil: Monmany, Ana Carolina. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Khalyani, Azad Henareh. State University of Colorado - Fort Collins; Estados UnidosFil: Quiñones, Maya. United States Department of Agriculture; Estados UnidosFil: Fain, Stephen J.. United States Department of Agriculture; Estados UnidosFil: Andrade Núñez, María José. Universidad de Puerto Rico; Puerto RicoFil: González, Grizelle. United States Department of Agriculture; Estados Unido

    Solar radiation and soil moisture drive tropical forest understory responses to experimental and natural hurricanes

    No full text
    Abstract Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species, Cyathea arborea and Cecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary‐successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late‐successional species, such as Manilkara bidentata and Sloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled
    corecore