6,743 research outputs found

    High Spectral and Spatial Resolution Observations of Shocked Molecular Hydrogen at the Galactic Center

    Get PDF
    The presence of OH (1720 MHz) masers, and the absence of counterparts at 1665/1667 MHz has proved to be a clear diagnostic of shocked molecular gas associated with Galactic supernova remnants. This suggests that shocked molecular gas should be associated with the OH (1720 MHz) masers that have been detected in the circumnuclear disk (CND) and Sgr A East at the Galactic center. In order to test this hypothesis, we observed the H2_2 1--0 S(1) and Br γ\gamma lines using NICMOS on the HST and UNSWIRF on the AAT, near the regions where OH (1720 MHz) masers are detected in the CND and Sgr A East. We present the distribution of H2_2 in the North and South lobes of the CND and in Sgr A East. H2_2 emission accompanies almost all of the maser spots detected at the Galactic center. In particular, we find a striking filamentary structure near the Northwest of the CND and evidence that shocked molecular gas is associated with the 70 \kms molecular cloud at the Galactic center. We argue that the emission from the CND could arise in gas heated by the dissipation of the random motion of clumps by collisions or the dissipation of turbulence in a more homogeneous medium. In addition, highly red-shifted gas of up to 140 \kms\ close to the eastern edge of the Sgr A East shell is detected. These observations combined with OH (1720 MHz) results suggest that the H2_2 gas is shocked and accelerated by the expansion of Sgr A East into the 50 and the 70 \kms cloud and into the lobes of the CND.Comment: 31 pages plus 14 figures, ApJ (in press

    Excellent daytime seeing at Dome Fuji on the Antarctic plateau

    Full text link
    Context. Dome Fuji, the second highest region on the Antarctic plateau, is expected to have some of the best astronomical seeing on Earth. However, site testing at Dome Fuji is still in its very early stages. Aims. To investigate the astronomical seeing in the free atmosphere above Dome Fuji, and to determine the height of the surface boundary layer. Methods. A Differential Image Motion Monitor was used to measure the seeing in the visible (472 nm) at a height of 11 m above the snow surface at Dome Fuji during the austral summer of 2012/2013. Results. Seeing below 0.2'' has been observed. The seeing often has a local minimum of ~0.3'' near 18 h local time. Some periods of excellent seeing, 0.3'' or smaller, were also observed, sometimes extending for several hours at local midnight. The median seeing is higher, at 0.52''---this large value is believed to be caused by periods when the telescope was within the turbulent boundary layer. Conclusions. The diurnal variation of the daytime seeing at Dome Fuji is similar to that reported for Dome C, and the height of the surface boundary layer is consistent with previous simulations for Dome Fuji. The free atmosphere seeing is ~0.2'', and the height of the surface boundary layer can be as low as ~11 m.Comment: 4 pages, 6 figures, Submitted to Astronomy & Astrophysics (letter

    Overcoming the boundary layer turbulence at Dome C: ground-layer adaptive optics versus tower

    Get PDF
    The unique atmospheric conditions present at sites such as Dome C on the Antarctic plateau are very favorable for high spatial resolution astronomy. At Dome C, the majority of the optical turbulence is confined to a 30 to 40 m thick stable boundary layer that results from the strong temperature inversion created by the heat exchange between the air and the ice-covered ground. To fully realize the potential of the exceptionally calm free atmosphere, this boundary layer must be overcome. In this article we compare the performance of two methods proposed to beat the boundary layer: mounting a telescope on a tower that physically puts it above the turbulent layer, and installing a telescope at ground level with a ground-layer adaptive optics system. A case is also made to combine these two methods to further improve the image quality

    The UNSW Extrasolar Planet Search: Methods and First Results from a Field Centred on NGC 6633

    Full text link
    We report on the current status of the University of New South Wales Extrasolar Planet Search project, giving details of the methods we use to obtain millimagnitude precision photometry using the 0.5m Automated Patrol Telescope. We use a novel observing technique to optimally broaden the PSF and thus largely eliminate photometric noise due to intra-pixel sensitivity variations on the CCD. We have observed 8 crowded Galactic fields using this technique during 2003 and 2004. Our analysis of the first of these fields (centred on the open cluster NGC 6633) has yielded 49 variable stars and 4 shallow transit candidates. Follow-up observations of these candidates have identified them as eclipsing binary systems. We use a detailed simulation of our observations to estimate our sensitivity to short-period planets, and to select a new observing strategy to maximise the number of planets detected.Comment: 16 pages, 9 figures, version published in MNRAS Updated figures, references, and additional discussion in section

    The first high-amplitude delta Scuti star in an eclipsing binary system

    Full text link
    We report the discovery of the first high-amplitude delta Scuti star in an eclipsing binary, which we have designated UNSW-V-500. The system is an Algol-type semi-detached eclipsing binary of maximum brightness V = 12.52 mag. A best-fitting solution to the binary light curve and two radial velocity curves is derived using the Wilson-Devinney code. We identify a late A spectral type primary component of mass 1.49+/-0.02 M_sun and a late K spectral type secondary of mass 0.33+/-0.02 M_sun, with an inclination of 86.5+/-1.0 degrees, and a period of 5.3504751+/-0.0000006 d. A Fourier analysis of the residuals from this solution is performed using PERIOD04 to investigate the delta Scuti pulsations. We detect a single pulsation frequency of f_1 = 13.621+/-0.015 c/d, and it appears this is the first overtone radial mode frequency. This system provides the first opportunity to measure the dynamical mass for a star of this variable type; previously, masses have been derived from stellar evolution and pulsation models.Comment: 7 pages, 6 figures, 2 tables, for submission to MNRAS, v2: paper size change, small typographical changes to abstrac

    Invest to Save: Report and Recommendations of the NSF-DELOS Working Group on Digital Archiving and Preservation

    Get PDF
    Digital archiving and preservation are important areas for research and development, but there is no agreed upon set of priorities or coherent plan for research in this area. Research projects in this area tend to be small and driven by particular institutional problems or concerns. As a consequence, proposed solutions from experimental projects and prototypes tend not to scale to millions of digital objects, nor do the results from disparate projects readily build on each other. It is also unclear whether it is worthwhile to seek general solutions or whether different strategies are needed for different types of digital objects and collections. The lack of coordination in both research and development means that there are some areas where researchers are reinventing the wheel while other areas are neglected. Digital archiving and preservation is an area that will benefit from an exercise in analysis, priority setting, and planning for future research. The WG aims to survey current research activities, identify gaps, and develop a white paper proposing future research directions in the area of digital preservation. Some of the potential areas for research include repository architectures and inter-operability among digital archives; automated tools for capture, ingest, and normalization of digital objects; and harmonization of preservation formats and metadata. There can also be opportunities for development of commercial products in the areas of mass storage systems, repositories and repository management systems, and data management software and tools.

    Evaluation of Hand-to-Hand Bioelectrical Impedance Analysis for Estimating Percent Body Fat in Young Adults

    Get PDF
    Purposes were to (a) to examine the validity and precision of a hand-to-hand bioelectrical impedance analyzer (HBIA) and (b) to determine the effect of an acute sub-maximal aerobic exercise bout on HBIA percent body fat (%BF) measures. Forty-one young adults (21 women; 20 men) visited the laboratory for body composition assessment on two separate occasions. During the control session, %BF was assessed by HBIA twice, before and immediately after 30 min of rest, and once by air-displacement plethysmography (ADP), using the BOD POD, which was considered the criterion method for comparison. During the exercise session, HBIA %BF measurements were determined prior-to and immediately after 30 minutes of moderate-intensity treadmill exercise. HBIA significantly underestimated %BF in the total sample (mean difference (MD) = 1.4 ± 4.3%) and, when examined by gender, in the women (MD = 2.4 ± 4.1%). The standard errors of estimate (range 4.1-4.3%) also exceeded the recommended range for accuracy (\u3c3.5%). Following exercise, there was minimal, but statistically significant reduction in HBIA-measured %BF pre- to post-exercise for the total sample (19.6 ± 6.0 vs. 19.3 ± 6.0%; p = 0.011). HBIA underestimated %BF when compared to ADP and the individual prediction error exceeded current recommendations when assessing young adults. In addition, performing sub-maximal aerobic exercise prior to the assessment decreased the %BF estimate. When one factors the exercise-induced alterations with the currently observed tendency for HBIA to underestimate %BF, it is apparent that exercise may further reduce the accuracy of this method

    Where is the best site on Earth? Domes A, B, C and F, and Ridges A and B

    Full text link
    The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases was selected with astronomy as the primary motivation. In this article, we try to systematically compare the merits of potential observatory sites.We include South Pole, Domes A, C, and F, and also Ridge B (running northeast from Dome A), and what we call "Ridge A" (running southwest from Dome A). Our analysis combines satellite data, published results, and atmospheric models, to compare the boundary layer, weather, aurorae, airglow, precipitable water vapor, thermal sky emission, surface temperature, and the free atmosphere, at each site. We find that all Antarctic sites are likely to be compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is easily the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted "OH hole" over Antarctica during spring.Comment: Revised version. 16 pages, 21 figures (22 in first version). Submitted to PASP 16/05/09, accepted 13/07/09; published 20/08/0
    • …
    corecore