17 research outputs found

    snoRNA, a Novel Precursor of microRNA in Giardia lamblia

    Get PDF
    An Argonaute homolog and a functional Dicer have been identified in the ancient eukaryote Giardia lamblia, which apparently lacks the ability to perform RNA interference (RNAi). The Giardia Argonaute plays an essential role in growth and is capable of binding specifically to the m7G-cap, suggesting a potential involvement in microRNA (miRNA)-mediated translational repression. To test such a possibility, small RNAs were isolated from Giardia trophozoites, cloned, and sequenced. A 26-nucleotide (nt) small RNA (miR2) was identified as a product of Dicer-processed snoRNA GlsR17 and localized to the cytoplasm by fluorescence in situ hybridization, whereas GlsR17 was found primarily in the nucleolus of only one of the two nuclei in Giardia. Three other small RNAs were also identified as products of snoRNAs, suggesting that the latter could be novel precursors of miRNAs in Giardia. Putative miR2 target sites were identified at the 3′-untranslated regions (UTR) of 22 variant surface protein mRNAs using the miRanda program. In vivo expression of Renilla luciferase mRNA containing six identical miR2 target sites in the 3′-UTR was reduced by 40% when co-transfected with synthetic miR2, while the level of luciferase mRNA remained unaffected. Thus, miR2 likely affects translation but not mRNA stability. This repression, however, was not observed when Argonaute was knocked down in Giardia using a ribozyme-antisense RNA. Instead, an enhancement of luciferase expression was observed, suggesting a loss of endogenous miR2-mediated repression when this protein is depleted. Additionally, the level of miR2 was significantly reduced when Dicer was knocked down. In all, the evidence indicates the presence of a snoRNA-derived miRNA-mediated translational repression in Giardia

    Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA

    Get PDF
    Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3′ end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3′-untranslated region (3′ UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2′-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia

    A La Autoantigen Homologue Is Required for the Internal Ribosome Entry Site Mediated Translation of Giardiavirus

    Get PDF
    Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5′ untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200–348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus

    Three putative targets of miR3 selected from the <i>Giardia</i> genomic database for testing.

    No full text
    a<p>- The numbering is based on the 150 nts chosen for analysis (50 nts upstream and 100 nts downstream of the stop codon).</p>b<p>- Target sites were identified with the miRanda program. The stop codon is shown in <b>bold</b>.</p

    Repression of RLuc transcript expression by the miR3 seed oligomer (8 nt-Seed).

    No full text
    <p><b>A)</b> An 8 nt miR3 seed oligomer (8 nt-Seed) is capable of repressing expression of RL-FC by 24%, RL-FC-18 by 24.7% and RL-H2A-TS by 22.8%. <b>B)</b> The 8 nt-Seed was also tested on RL-FC and RL-FC-18 expression in the GlAgo KD cells, and showed no apparent effect. The data represent the mean +/− SD from at least two independent assays. The controls show the levels of expression of various chimeric transcripts in the absence of exogenously introduced 8nt-Seed. The values are set at 100% and presented in a single control column.</p

    Analysis of mutations to a fully complementary (FC) miR3 target.

    No full text
    <p><b>A)</b> The numberings of nucleotides in FC with the seed sequence shown in red. The ΔG derived from base-pairings with miR3 is shown below. <b>B)</b> Mutations of RL-FC were carried out stepwise from the 5′-end of FC to reduce the base-pairings with miR3. Mutant transcripts were transfected into <i>Giardia</i> trophozoites along with miR3 and assayed for RLuc activity. The mean +/− SD from three independent experiments is presented. The ΔG values estimated from base-pairings with miR3 for each mutant is shown in an orange-colored line. The control column on the left represents the level of expression of each of the mutant transcripts in the absence of introduced miR3. They are each set at 100% and presented in a single column.</p
    corecore