6 research outputs found

    Increased earthquake rate prior to mainshocks

    Full text link
    According to the Omori-Utsu law, the rate of aftershocks after a mainshock decays as a power law with an exponent close to 1. This well-established law was intensively used in the past to study and model the statistical properties of earthquakes. Moreover, according to the so-called inverse Omori law, the rate of earthquakes should also increase prior to a mainshock -- this law has received much less attention due to its large uncertainty. Here, we mainly study the inverse Omori law based on a highly detailed Southern California earthquake catalog, which is complete for magnitudes larger than M>0.3. First, we develop a technique to identify mainshocks, foreshocks, and aftershocks. We then find, based on a statistical procedure we developed, that the rate of earthquakes is higher a few days prior to a mainshock. We find that this increase is much smaller for a catalog with a magnitude threshold of m over 2.5 and for the Epidemic-Type Aftershocks Sequence (ETAS) model catalogs, even when used with a small magnitude threshold. We also analyze the rate of aftershocks after mainshocks and find that the Omori-Utsu law does not hold for many individual mainshocks and that it may be valid only statistically when considering many mainshocks together. Yet, the analysis of the ETAS model based on the Omori-Utsu law exhibits similar behavior as that of the real catalogs, indicating the validity of this law.Comment: 19 pages, 7 figure

    Unsupervised Analysis of Classical Biomedical Markers: Robustness and Medical Relevance of Patient Clustering Using Bioinformatics Tools

    Get PDF
    Motivation: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples. Method: Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set. Results: The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This coul

    Model-free prediction of microbiome compositions

    No full text
    Abstract Background The recent recognition of the importance of the microbiome to the host’s health and well-being has yielded efforts to develop therapies that aim to shift the microbiome from a disease-associated state to a healthier one. Direct manipulation techniques of the species’ assemblage are currently available, e.g., using probiotics or narrow-spectrum antibiotics to introduce or eliminate specific taxa. However, predicting the species’ abundances at the new state remains a challenge, mainly due to the difficulties of deciphering the delicate underlying network of ecological interactions or constructing a predictive model for such complex ecosystems. Results Here, we propose a model-free method to predict the species’ abundances at the new steady state based on their presence/absence configuration by utilizing a multi-dimensional k-nearest-neighbors (kNN) regression algorithm. By analyzing data from numeric simulations of ecological dynamics, we show that our predictions, which consider the presence/absence of all species holistically, outperform both the null model that uses the statistics of each species independently and a predictive neural network model. We analyze real metagenomic data of human-associated microbial communities and find that by relying on a small number of “neighboring” samples, i.e., samples with similar species assemblage, the kNN predicts the species abundance better than the whole-cohort average. By studying both real metagenomic and simulated data, we show that the predictability of our method is tightly related to the dissimilarity-overlap relationship of the training data. Conclusions Our results demonstrate how model-free methods can prove useful in predicting microbial communities and may facilitate the development of microbial-based therapies. Video Abstrac
    corecore