6 research outputs found

    Heat radiation and transfer in confinement

    Full text link
    Near-field heat radiation and transfer are rich in various exciting effects, in particular, regarding the amplification due to the geometrical configuration of the system. In this paper, we study heat exchange in situations where the objects are confined by additional objects so that the dimensionality of heat flow is reduced. In particular, we compute the heat transfer for spherical point particles placed between two parallel plates. The presence of the plates can enhance or reduce the transfer compared to the free case and provides a slower power-law decay for large distance. We also compute the heat radiation of a sphere placed inside a spherical cavity, finding that it can be larger or smaller compared to the radiation of a free sphere. This radiation shows strong resonances as a function of the cavity's size. For example, the cooling rate of a nanosphere placed in a cavity varies by a factor of 10510^5 between cavity radii 2 μm 2 \ \mu {\rm m} and 5 μm 5 \ \mu {\rm m} .Comment: 8 pages, 7 figures (v2: discussion about different heat flow contributions was added, temperatures were added to the figures describing configurations; Fig. 3 was added; discussions related to validity of the point particle approximation were updated; meters were replaced with micrometers in figures and text; minor changes in text

    Heat radiation and transfer for point particles in arbitrary geometries

    Full text link
    We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and radiation for point particles are given in terms of the Green's function of the system in the absence of the point particles. These general expressions contain no approximation for the surrounding objects. As an application, we compute the heat transfer between two point particles in the presence of a sphere of arbitrary size and show that the transfer is enhanced by several orders of magnitude through the presence of the sphere, depending on the materials. Furthermore, we compute the heat emission of a point particle in front of a planar mirror. Finally, we show that a particle placed inside a spherical mirror cavity does not radiate energy.Comment: 14 pages, 9 figures (v2: Sec. IIIE was added; explanation of Eq. (29) was added; sentence in Acknowledgments was added; Ref. [69] was added; minor changes in text

    Using the fluctuation-dissipation theorem for nonconservative forces

    Full text link
    An equilibrium system which is perturbed by an external potential relaxes to a new equilibrium state, a process obeying the fluctuation-dissipation theorem. In contrast, perturbing by nonconservative forces yields a nonequilibrium steady state, and the fluctuation-dissipation theorem can in general not be applied. Here we exploit a freedom inherent to linear response theory: Force fields which perform work that does not couple statistically to the considered observable can be added without changing the response. Using this freedom, we demonstrate that the fluctuation-dissipation theorem can be applied for certain nonconservative forces. We discuss the case of a nonconservative force field linear in particle coordinates, where the mentioned freedom can be formulated in terms of symmetries. In particular, for the case of shear, this yields a response formula, which we find advantageous over the known Green-Kubo relation in terms of statistical accuracy.Comment: 5 pages, 3 figures (v2: Acknowledgments have been extended. v3: minor changes in the abstract, text, and Fig. 3; Ref. [22] has been added

    Response of active Brownian particles to shear flow

    Full text link
    We study the linear response of interacting active Brownian particles in an external potential to simple shear flow. Using a path integral approach, we derive the linear response of any state observable to initiating shear in terms of correlation functions evaluated in the unperturbed system. For systems and observables which are symmetric under exchange of the xx and yy coordinates, the response formula can be drastically simplified to a form containing only state variables in the corresponding correlation functions (compared to the generic formula containing also time derivatives). In general, the shear couples to the particles by translational as well as rotational advection, but in the aforementioned case of xyxy symmetry only translational advection is relevant in the linear regime. We apply the response formulas analytically in solvable cases and numerically in a specific setup. In particular, we investigate the effect of a shear flow on the morphology and the stress of NN confined active particles in interaction, where we find that the activity as well as additional alignment interactions generally increase the response.Comment: 13 pages, 4 figure
    corecore