22 research outputs found

    Consistent oviposition preferences of the Duke of Burgundy butterfly over 14 years on a chalk grassland reserve in Bedfordshire, UK

    Get PDF
    Funder: Christ's College, University of Cambridge (GB)Funder: Isaac Newton Trust; doi: http://dx.doi.org/10.13039/501100004815Funder: Museums Association and Esmée Fairbairn Collections Fund (GB)Abstract: The Duke of Burgundy butterfly (Hamearis lucina) is known to have specific habitat requirements for its larval foodplants. However, no studies have yet investigated whether these preferences vary over time or in relation to climate, and there is a paucity of data on whether management on reserves can replicate preferred conditions. Here, we build upon existing research to confirm which characteristics Duke of Burgundy prefer for their larval foodplants, whether preferences remain consistent across years, and whether conservation management on reserves can replicate these conditions. Fieldwork was carried out at Totternhoe Quarry Reserve, a chalk grassland site in Bedfordshire, UK. Confirming previous research, we found that large Primula plants in dense patches were chosen for oviposition, but that once chosen there was no preference to lay eggs on a plant’s largest leaf. Chosen foodplants were also more sheltered and in closer proximity to scrub than their controls. However, at a finer scale, we found little evidence for any preference based on differences in microclimate, or vegetation height immediately surrounding the plants. This suggests features that alter microclimatic conditions at a larger scale are relatively more important for determining the suitability of oviposition sites. Nearly all preferences remained consistent over time and did not vary between years. Management of scrub on the reserve was able to reproduce some preferred habitat features (high plant density), but not others (large plant size). Implications for insect conservation: The consistency of findings across years, despite inter-annual variation in temperature, rainfall and number of adults, indicates that the Duke of Burgundy is conservative in its foodplant choice, highlighting its need for specific habitat management. Targeted management for foodplants could form part of a tractable set of tools to support Duke of Burgundy numbers on reserves, but a careful balance is needed to avoid scrub clearance leaving plants in sub-optimal conditions

    Oviposition behaviour and emergence through time of the small blue butterfly (Cupido minimus) in a nature reserve in Bedfordshire, UK.

    Get PDF
    ABSTRACT: Climate change affects butterflies in many ways, influencing the timing of emergence and reproduction, habitat preferences, and behaviour. The small blue (Cupido minimus Fuessley, 1775) is highly specialised in its host plant requirements, feeding on the seeds of a single species, kidney vetch (Anthyllis vulneraria), on which the larvae occur singly to avoid cannibalism. The butterfly is likely to be vulnerable to temperature-related changes in oviposition, adult emergence, and host plant flowering times, and is, therefore, a good model species for investigating climate change-related impacts. Using 26 years of data from the national UK Butterfly Monitoring Scheme (1993-2019) from one nature reserve, and 4 years of targeted egg searches (2006, 2007, 2008, 2020) from three reserves in Bedfordshire, UK, we investigated the effects of local temperature on small blue emergence date and total abundance, whether flowerhead or local environmental characteristics predicted small blue oviposition behaviour, and whether this changed between years. Small blue adults emerged on earlier dates over time, and earlier in years with higher maximum February temperatures. Total adult abundance was not predicted by monthly temperatures or total abundance in the previous year. Oviposition behaviour was broadly consistent across years, with egg presence more likely and egg abundance higher on kidney vetch flowerheads that were taller than the surrounding vegetation, and surrounded by taller vegetation and fewer mature flowerheads. The effect of solar radiation differed between years, with a negative effect on the probability of egg presence in 2007 and 2008, but a positive effect in 2020. Egg abundance per flowerhead was highly variable between years, with 2006 having four times more eggs per flowerhead than other years. This was likely driven by high adult abundance in 2006, which could have increased competition for flowerheads. IMPLICATIONS FOR INSECT CONSERVATION: Our results indicate that management for greater availability of taller kidney vetch amongst taller vegetation would encourage small blue oviposition on a greater number of flowerheads, providing a possible means of reducing competition and increasing larval survival, and that this would be effective despite variation in adult abundance between years. The high level of competition we observed in the year with the highest adult abundance indicates that higher numbers of host plants should be encouraged to reduce competition and larval cannibalism in peak years, increasing the likelihood of long-term population persistence and growth. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10841-021-00360-5.SITA Trust Landfill Community, Bedfordshire and Northamptonshire Butterfly Conservation, Balfour Browne fund, Natural England, Isaac Newton Trust/Wellcome TrustISSF/University of Cambridge Joint Research Grants Scheme (RG89529

    Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies

    Get PDF
    Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species
    corecore